
Journal of Computer Graphics Techniques
Efficient Spherical Harmonic Evaluation

Vol. 2, No. 2, 2013
http://jcgt.org

Efficient Spherical Harmonic Evaluation

Peter-Pike Sloan
NVIDIA Corporation

Abstract

The real spherical harmonics have been used extensively in computer graphics, but the con-
ventional representation is in terms of spherical coordinates and involves expensive trigono-
metric functions. While the polynomial form is often listed for low orders, directly evaluating
the basis functions independently is inefficient. This paper will describe in detail how re-
currence relations can be used to generate pre-factored evaluation code that is smaller, more
efficient, and presents a performance comparison of several alternative techniques to evaluate
the spherical harmonics.

1. Introduction

While spherical harmonics represent complex functions on the sphere, the real spheri-
cal harmonics (RSH) have been used extensively in graphics [Ramamoorthi and Han-
rahan 2001; Sloan et al. 2002] and games [Chen 2008]. They are the spherical analog
to the Fourier basis on the unit circle and, conceptually, are just a representation of
spherical functions. While they have several important properties and efficient al-
gorithms exist for convolution, computing various integrals, computing products of
spherical functions and rotation [Sloan 2008], this paper focuses on how to evaluate
the basis for a given direction on the unit sphere. This is one of the most common
operations on SH, for everything from evaluating irradiance environment maps [Ra-
mamoorthi and Hanrahan 2001] to projection of analytic light sources. The most
common mathematical form in the literature is

ym
l =

√

2Km
l cos(mφ)Pm

l (cosθ), m > 0,√
2Km

l sin(|m|φ)P|m|l (cosθ), m < 0,
Km

l Pm
l (cosθ), m = 0.

(1)

where Pm
l are the associated Legendre polynomials and Km

l are the normalization
constants

Km
l =

√
(2l +1)(l−|m|)!

4π(l + |m|)!
.

84

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Spherical Harmonic Evaluation

Vol. 2, No. 2, 2013
http://jcgt.org

They are indexed by band l and function in a band m, where l is a non-negative
integer, and m is an integer in [−l, l] in band l. An order O SH consists of all the
bands between 0 and O− 1 which has O2 basis functions. This form is convenient
for symbolic computations and evaluating analytic integrals, but it is expensive to
evaluate at run-time. SH can also be represented as polynomials of a point on the unit
sphere,1 but they become quite complex, particularly at higher orders. The basis is
orthogonal, closed under rotations, and, using a small number of bands, can accurately
represent smooth functions.

1.1. Related Work

In a previous paper, Sloan [2008] gave a cursory description of some recurrence re-
lations and a vague mention of how they might be used, but no explicit algorithm
or code was given. Snyder [2006] described nicely how to compute the products of
real SH, and this paper, in the same spirit, attempts to do so for evaluation. Many
equations for recurrence relations/properties of spherical harmonics can be found in
a text book [Varshalovich et al. 1988], but be forewarned, that these are for the com-
plex spherical harmonics, so they have to be tweaked to work for the real spherical
harmonics.

Another paper [Green 2003] has code for evaluating the RSH in spherical coordi-
nates, but it is 2–3 orders of magnitude slower than the techniques presented in this
paper. There also was a detailed code example of how to efficiently evaluate order 3
SH [Sloan 2003] on GPU shaders; this paper, however, is focused on higher orders.
For vectorized GPU’s, we would still recommend using that technique, but on GPU’s
that have scalar lanes, it is not necessary.

Code generators for specific algorithms have existed for a long time; FFTW [Frigo
and Johnson 2005] is a good example. The code generator here is fairly simple and
just generates scalar or SSE C code that can be compiled and linked to a given pro-
gram.

2. SH Code Generator

To generate efficient SH code, we will exploit some common recurrence relations for
the associated Legendre polynomials, and a clever trick from a former colleague at
Microsoft, John Snyder, that makes them applicable to Cartesian coordinates, instead
of the usual spherical ones. The equations for the associated Legendre polynomials
are

Pm
l (x) = (1− x2)m/2 dm

dxm (Pl(x)) (2)

1Band l represents the polynomial basis of degree l when restricted to the unit sphere. Above the
linear functions l = 1, this is a smaller basis than when considered over all R3.

85

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Spherical Harmonic Evaluation

Vol. 2, No. 2, 2013
http://jcgt.org

where P is a Legendre polynomial. When x = cosθ it simplifies to

Pm
l (cosθ) = (sinθ)m dm

dxm (Pl(cosθ)) . (3)

In Cartesian coordinates z = cosθ, so if we divide Pm
l by (sinθ)m, we are left with an

expression that is simply a polynomial in z. Looking at Equation (1), one can simply
absorb this (sinθ)m term into the φ terms, which leaves that part as a polynomial in x
and y when expanded from mφ to φ using the trigonometric addition theorem.2

To evaluate Equation 1 in terms of Cartesian coordinates, we use the following
recurrence relations:

Pm
m = (1−2m)Pm−1

m−1 , (4a)

Pm
m+1 = (2m+1)zPm

m , (4b)

Pm
l =

(2l−1)zPm
l−1− (l +m−1)Pm

l−2

l−m
, (4c)

Pm
m+2 =

(2m+3)(2m+1)Pm
m z2− (2m+1)Pm

m

2
, (4d)

Pm
m+3 =

zPm
m ((2m+5)(2m+3)(2m+1)z2−3(4m2 +8m+3))

6
. (4e)

Equation (4a) has the (sinθ)m term factored out, and all of the other recurrence re-
lations build off this one. Most of the work is done using Equation (4c). Rules (4d)
and (4e) are constructed by simply plugging in (4a) and (4b) into Equation (4c) and
factoring constant expressions. Using these relations, you first compute the Y 0

l func-
tions, then iterate through the m terms for each relevant band from smallest to largest,
building up the x,y terms using the trigonometric addition theorem.

Even when precomputing Pm
m and Km

l in tables for a fixed order, evaluating these
recurrence relations on the fly turns out to be slower than just using explicit polyno-
mials for several reasons:

1. Products of constants involving Km
l have to be multiplied through the recurrence

relations.

2. Terms in the relations that are simple functions of l and m have to be computed.

3. There is flow control overhead for iterating through bands.

As an alternative, we wrote a program that, for a given order, evaluates the re-
currence relations and generates code that propagates constant terms aggressively.
Precision is a big problem, since naive evaluation of Km

l will have precision prob-
lems. The code is given in Listing 1, but, for higher orders, you should either code it

2This theorem can be used to express cos(mφ) or sin(mφ) as a sum of terms where each one has
exactly m of sin(φ) or cos(φ), which, when paired with sin(θ)m, leaves you with a polynomial in x
and y.

86

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Spherical Harmonic Evaluation

Vol. 2, No. 2, 2013
http://jcgt.org

/* SH Normalization function:

K(l,m) = sqrt((2*l + 1)(l - |m|)!/(4 Pi (l + |m|)!)

The factorials mostly cancel out, you don’t want overflow.

To really be robust, you need to include this with the

evaluation of Plm -- particularly for large m */

double K(const unsigned int l, const int m) {

const unsigned int cAM = abs(m);

double uVal = 1;// must be double

for (unsigned int k = l + cAM; k > (l - cAM); k--) uVal *= k;

return sqrt((2.0 * l + 1.0) / (4 * PI * uVal));

}

Listing 1. Km
l code.

up in something like Mathematica or use an arbitrary precision arithmetic library—as
l gets large, Pm

m becomes a huge number and Km
l becomes very small.

There are two other optimizations in the code generator that can lead to increased
performance. On some architectures, the dependencies in the instruction sequence
cause issues, but if you interleave a pair of SH evaluations by construction every
other instruction will be completely independent, leading to higher performance. Fi-
nally, you can generate vectorized code that evaluates the SIMD units width of SH
evaluations in parallel. This leads to a significant performance win, depending on the
architecture. On the Nintendo Wii I had to employ both of these modifications to get
the 2X speedup one would expect from moving to the 2-wide vector instructions in
that architecture; there was no speedup just vectorizing a pair of evaluations together.
When generating vector code, the final results are interleaved—they either need to
be de-interleaved by code, or code that uses them downstream has to understand this
layout. A concrete example is using this to fill an environment map; this has been
successfully used on several Wii titles [Ownby et al. 2010].

3. Results

We benchmarked various SH evaluation codes at orders up to 10. The techniques,
illustrated from top to bottom in Table 1 are using recurrence relations in spheri-
cal coordinates (GRITY) [Green 2003], recurrence relations in Cartesian coordinates
(Recur),3 explicit polynomials for each basis function (Poly) [Sloan 2008], the output
of the code generator for scalar code (RecCG) and, finally, vectorized output (Rec-
SSE). The benchmark uses the same set of 160,000 random directions4 and takes a

3Both these techniques precomputed a table of Km
l values and Pm

m values. For the Gritty code 25%
less time was needed.

4They are represented in Cartesian and spherical coordinates as a precomputation. Evaluation code
does not have any data-dependent branches, so the directions are unimportant.

87

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Spherical Harmonic Evaluation

Vol. 2, No. 2, 2013
http://jcgt.org

Algorithm 3 4 6 8 10

GRITY3 85.89 126.84 300.96 625.41 1158.86

Recur3 22.82 38.19 86.24 172.36 295.83

Poly 4.29 9.76 26.77 52.74 85.19

RecCG 4.06 7.59 21.14 39.64 64.17

RecSSE 0.95 2.01 5.35 9.65 15.82

Table 1. Comparison of SH evaluation algorithms at various orders. RecCG and RecSSE are
the ones from this paper, timings are in nanoseconds per SH evaluation.

void SHNewEval3(const float fX, const float fY, const float fZ,

float* __restrict pSH) {

float fC0, fC1, fS0, fS1, fTmpA, fTmpB, fTmpC;

float fZ2 = fZ * fZ;

pSH[0] = 0.2820947917738781f;

pSH[2] = 0.4886025119029199f * fZ;

pSH[6] = 0.9461746957575601f * fZ2 + -0.3153915652525201f;

fC0 = fX;

fS0 = fY;

fTmpA = -0.48860251190292f;

pSH[3] = fTmpA * fC0;

pSH[1] = fTmpA * fS0;

fTmpB = -1.092548430592079f * fZ;

pSH[7] = fTmpB * fC0;

pSH[5] = fTmpB * fS0;

fC1 = fX*fC0 - fY*fS0;

fS1 = fX*fS0 + fY*fC0;

fTmpC = 0.5462742152960395f;

pSH[8] = fTmpC * fC1;

pSH[4] = fTmpC * fS1;

}

Listing 2. Order 3 SH evaluation code.

minimum of 100 evaluation runs. The output of the code generator is always faster
than the raw polynomials and generates less code compared to the raw polynomials.5

Timings are on a 3.5 GHz Intel i7 processor.
Listing 2 is example output for the quadratic SH; see the supplemental documents

for higher-order/vectorized code examples. The order of the coefficients uses the
standard mapping to a single index: i = l(l +1)+m.

5At 10th order, the code generator functions use 2898 bytes, while the polynomials use 4339 bytes.

88

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Spherical Harmonic Evaluation

Vol. 2, No. 2, 2013
http://jcgt.org

Acknowledgements

I am particularly indebted to John Snyder; the approach taken in this paper was his idea, in
particular, the clever absorption of the sin(θ)m-term from the associated Legendre Polyno-
mials into the φ-dependent that enabled a fairly straightforward application of the recurrence
relations expressed in θ,φ to the Cartesian coordinates. Morgan McGuire gave valuable feed-
back on an earlier draft of this paper.

References

CHEN, H. 2008. Lighting and Materials of Halo3. In Game Developers Conference.
http://gdcvault.com/play/253/Lighting-and-Material-of-HALO. 84

FRIGO, M., AND JOHNSON, S. G. 2005. The design and implementation of FFTW3. Pro-
ceedings of the IEEE 93, 2, 216–231. Special issue on “Program Generation, Optimization,
and Platform Adaptation”. 85

GREEN, R. 2003. Spherical Harmonic Lighting: The Gritty Details. In Game Developers
Conference. http://www.research.scea.com/gdc2003/spherical-harmonic-lighting.pdf. 85,
87

OWNBY, J.-P., HALL, R., AND HALL, C. 2010. Rendering Techniques in Toy Story 3. In
SIGGRAPH 2010 Course: Advances in Real-Time Rendering in 3D Graphics and Games,
ACM Press, New York. 87

RAMAMOORTHI, R., AND HANRAHAN, P. 2001. An efficient representation for irradiance
environment maps. In SIGGRAPH 2001 Conference Proceedings, August 12–17, 2001,
Los Angeles, CA, ACM Press, New York, 497–500. 84

SLOAN, P.-P., KAUTZ, J., AND SNYDER, J. 2002. Precomputed radiance transfer for real-
time rendering in dynamic, low-frequency lighting environments. ACM Transactions on
Graphics 21, 3 (July), 527–536. 84

SLOAN, P.-P. 2003. Efficient evaluation of irradiance environment maps. In ShaderX2:
Shader Programming Tips and Tricks with DirectX 9.0, W. Engel, Ed. Wordware, Plano,
Texas. 85

SLOAN, P.-P. 2008. Stupid Spherical Harmonics (SH) Tricks. In Game Developers Confer-
ence. http://www.gdcvault.com/play/273/Stupid-Spherical-Harmonics-(SH). 84, 85, 87

SNYDER, J. 2006. Code Generation and Factoring for Fast Evaluation of Low-order Spherical
Harmonic Products and Squares. Tech. Rep. MSR-TR-2006-53, Microsoft Research. 85

VARSHALOVICH, D. A., MOSKALEV, A. N., AND KHERSONSKII, V. K. 1988. Quantum
Theory of Angular Momentum. World Scientific, Singapore. 85

Supplemental Materials

The supplemental materials include a Visual Studio solution that calls the code and generates
a file with evaluation code for orders 3 through 10. The file SHEvalCodeGen.cpp has the
single relevant entry point, BuildSHEvalCode and lmax is the degree to generate. In that file,

89

http://jcgt.org

Journal of Computer Graphics Techniques
Efficient Spherical Harmonic Evaluation

Vol. 2, No. 2, 2013
http://jcgt.org

there is a #define SSE that needs to be uncommented to generate vectorized code. There are
also two files that are the output of the code generator: SHEval.cpp and SHEvalSSE.cpp.

Author Contact Information
Peter-Pike Sloan
NVIDIA Corporation
11431 Willows Road NE
Suite 200
Redmond, WA 98052
ppjsloan@gmail.com

Peter-Pike Sloan, Efficient Spherical Harmonic Evaluation, Journal of Computer Graphics
Techniques (JCGT), vol. 2, no. 2, 84–90, 2013
http://jcgt.org/published/0002/02/06/

Received: 2013-07-01
Recommended: 2013-08-09 Corresponding Editor: Cindy Grimm
Published: 2013-09-08 Editor-in-Chief: Morgan McGuire

c© 2013 Peter-Pike Sloan (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

90

http://jcgt.org
mailto:ppjsloan@gmail.com
http://jcgt.org/published/0002/02/06/
http://creativecommons.org/licenses/by-nd/3.0/

