
Journal of Computer Graphics Techniques Vol. 2, No. 2, 2013 http://jcgt.org

Avoiding Texture Seams by Discarding Filter Taps

Robert Toth
Intel Corporation

Prior art: 568µs Our method: 412µs Difference ×5

Figure 1. A scene using many individually textured patches. For illustration purposes, each
texture has a different base color. The character uses 1450 textures, and the ground plane uses
another 1024 textures. In this paper, we present an inexpensive method of filtering textures at
seams with wide anisotropic filters, with quality similar to prior more expensive methods.

Abstract

Mapping textures to complex objects is a non-trivial task. It is often desirable or even nec-
essary to map separate textures to different parts of an object, but it may be difficult to ob-
tain high-quality texture filtering across the seams where textures meet. Existing real-time
methods either require significant amounts of memory, prohibit use of wide texture filters,
or have a high complexity. In this paper, we present a new method for sampling textures
which is surprisingly simple, does not require padding, and results in high image quality. The
method discards filter taps that extend beyond the texture boundary and relies on multisam-
ple antialiasing in order to produce good image quality. Our method is suitable for real-time
implementations of rectangular-chart-based assets, such as per-patch texturing (e.g. Ptex).

1. Introduction

Assigning texture coordinates to objects can be a difficult task. It is often impossible
to define a single continuous two-dimensional surface that can be wrapped around a

91 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

(a) (b) (c)

Figure 2. (a) The surface of this object cannot be mapped to a two-dimensional texture with-
out introducing seams, where a neighborhood around a point on the surface is not continuous
in texture space. (b) Result of automatic UV unwrapping, overlayed over a gradient texture.
(c) Seams in the UV map are clearly visible as discontinuities in the surface color.

three-dimensional object. An example of this is shown in Figure 2. In these cases,
multiple textures (possibly packed into an atlas) must be used to obtain full coverage
of the object’s surface. Even in cases where it is possible to use a single texture, it is
often more practical to divide the surface into multiple regions with a separate texture
for each region, as this vastly simplifies texel density management. In the extreme,
each primitive may be assigned a unique texture – the Ptex texturing system [Burley
and Lacewell 2008] does this and has been adopted with great success in the movie
industry.

Texture sampling near seams—where textures meet—must be done with care to
avoid rendering artifacts, as the seam should not be visible in the rendered result.
Furthermore, bilinear and trilinear texture filtering are progressively being replaced by
wider filters, with increasing adoption of anisotropic texture filtering. In these cases,
the texture filter footprint may extend far outside of a texture, further complicating
the handling of seams.

In this paper, we present a new method to sample textures, which supports wide
texture filters while producing invisible seams between multiple textures without
complex shader or sampler logic, and without using wide memory-consuming guard
bands.

2. Existing Methods

Figure 3 illustrates two fragments in a pixel, each mapped to different textures. The
texture filters for each of the two fragments extend outside of the boundaries of the
texture mapped to the corresponding fragment. There are several ways to handle this
situation—as described next—most of which aim to estimate the color of the filtered
region outside of the texture bounds.

92

http://jcgt.org

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

Texture A Texture B
PixelA

B

Figure 3. Left: Two adjacent fragments at a texture seam. Right: Wide filter kernels extend
outside of each texture. In general, the texture space filter footprint will not have the same
shape or size for both fragments.

The Direct3D and OpenGL graphics APIs use texture address modes, which spec-
ify how the full two-dimensional domain of texture coordinates should be interpreted.
The texture address modes include clamping, mirroring, and repeating color data out-
side of the texture boundaries.

Multiple textures are often packed into a single larger image called an atlas. The
textures within the atlas usually contain guard bands to allow for mipmapping, wide
filters, and shading of points slightly outside of primitives.

Purnomo et al. [2004] map texels to texture edges such that bi- and trilinear filter-
ing at texture coordinates within the surface never requires data from the neighboring
textures. They also describe how to use a single-texel-wide border, available in the
OpenGL compatibility context, to achieve invisible seams.

The Ptex texture mapping system [Burley and Lacewell 2008] was designed for
offline rendering. During the sampling process, neighboring textures are located along
with their orientation, so that filter taps outside of the texture bounds (taps with any
texture coordinate component outside of the [0,1] interval) sample the adjacent tex-
tures. We will refer to this process as traversal.

McDonald and Burley [2011] add a guard band as wide as the filter extents at
each mip level, to avoid sampling texels outside of the guard band. The contents of
adjacent textures are copied into the guard band, thus emulating the result of Ptex in
real-time.

McDonald [2013] eliminates the need of a guard band by providing connectivity
information to the shader and sampling adjacent textures, similar to Ptex.

Each of the methods above suffer from one shortcoming or another. The Direct3D
and OpenGL texture address modes each introduce incorrect data at seams (except for
some special cases, such as repeating textures). Traversing multiple textures in the
texture sampler requires providing connectivity information and the relative mapping
of texture coordinates between textures to the shader, as well as access to all of the
neighboring textures. Placing texels at edges ensures that bilinear sampling inside a
texture works well, but does not handle wide filters where taps may end up outside
of the texture bounds. Adding a guard band to every mip level increases the memory

93

http://jcgt.org

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

and bandwidth usage of textures significantly due to the extensive duplication of data.
Adding guard bands to atlases, sufficiently wide to support anisotropic filters even at
coarse mip levels, requires even more memory than individually padding each mip
level [McDonald and Burley 2011], since they grow exponentially in size for each
finer mip level. Centroid sampling is required to guarantee that the texture footprint
center is contained within the texture, both when using guard band methods and when
placing texels at edges using a narrow filter.

In practice, most applications use some form of atlas, but with a much thinner
guard band than would theoretically be required, and simply accept that a filter kernel
may sample invalid data outside of the moderately padded texture region in unlucky
cases.

Among the alternatives listed above, our proposed method is most similar to the
method proposed by McDonald [2013], which we will refer to as Traverse since it
visits neighboring textures during sampling. We will use Traverse for comparison
purposes in the remainder of the paper.

3. A New Method: Discard

Our method limits texture filtering at seams, so as to integrate the texture only over
the fragment, as opposed to the entire pixel. Thus, we do not try to estimate texture
data for taps falling outside of the texture, but rather exclude them from the filtering
process. It is assumed that texture edges coincide with geometric edges. We will refer
to our method as Discard, since we discard filter taps.

Figure 4 (left) illustrates the texture filter footprint of two fragments in a pixel,
each mapped to different textures and each extrapolated into the adjacent texture.
Previous work strives to compute the filtered combination of the two textures when
sampling the texture for each fragment, either by traversal or by otherwise guessing
at the neighboring content (e.g., padding or mirroring the texture).

The sampling process of Traverse will now be described more formally. Let CA

and CB be the fragment colors, and let TA and TB be the texture functions. Futhermore,
let fA and fB be the filter functions within the respective texture of each fragment, and
f̂B and f̂A be the extrapolated filter functions in the neighboring textures. The values

Figure 4. Filtering of the fragments from Figure 3. Left: The texture integral over the entire
pixel footprint is estimated for each fragment in previous methods. Right: The texture integral
over just the fragment’s footprint is estimated using our proposed method, called Discard.

94

http://jcgt.org

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

CA and CB are then:

CA =
∫

TA fA +
∫

TB f̂B,
∫

fA +
∫

f̂B = 1,

CB =
∫

TB fB +
∫

TA f̂A,
∫

fB +
∫

f̂A = 1. (1)

During multi-sampling resolve, the final pixel color P is a weighted sum of the frag-
ment colors, using a coverage-based function w:

P = wACA +wBCB, wA +wB = 1. (2)

With low curvature and perspective distortion, it holds that

f̂i ≈ fi. (3)

Therefore, both fragments obtain approximately the same filtered color, which also
becomes the final pixel color:

P = wA

(∫
TA fA +

∫
TB f̂B

)
+wB

(∫
TB fB +

∫
TA f̂A

)
≈ wA

(∫
TA fA +

∫
TB fB

)
+wB

(∫
TB fB +

∫
TA fA

)
=

∫
TA fA +

∫
TB fB. (4)

Our main contribution is to introduce a different approximation for Discard. We
assume that the multisampling filter and the texture filter have a similar distribution:

wA ≈
∫

fA, wB ≈
∫

fB. (5)

Note that the purpose of both f and w is to low-pass filter the texture and image
function, respectively, before sampling at one sample/pixel, and both can thus be con-
sidered practical approximations of the theoretically ideal sinc filter. Since they both
approximate the same filter, they also approximate each other. With this assumption,
it turns out that we can simply ignore the part of the filter that extends outside of the
fragments’ corresponding textures and avoid approximating f̂i altogether:

C′
A =

∫
TA fA∫

fA
, C′

B =

∫
TB fB∫

fB
, (6)

P′ = wAC′
A +wBC′

B

≈
(∫

fA

)∫
TA fA∫

fA
+
(∫

fB

)∫
TB fB∫

fB

=
∫

TA fA +
∫

TB fB. (7)

95

http://jcgt.org

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

Note that both approximations (Equations (3) and (5)), when reasonably accurate,
lead to the same result (Equations (4) and (7)). The difference lies in the required
circumstances: previous work requires a good approximation of the filter shape in
adjacent primitives, as well as knowledge of the neighboring texture function, while
our proposed model instead requires the multi-sampling filter and the texture filter to
be similar.

To summarize, instead of estimating a filtered combination of multiple textures,
the proposed method lets each fragment limit the filter to only consider the area that
falls inside the local texture bounds. This is illustrated in Figure 4 (right) and amounts
to a texture address mode which discards any filter taps that end up with a texture co-
ordinate component outside of the [0,1]-range. The multi-sample resolve then blends
the fragments together according to their relative coverage.

The numerator in Equation (6),
∫

T f , is obtained by setting the texture address
mode to a constant border color of zero and performing sampling as usual. The de-
nominator,

∫
f , is obtained by sampling a texture channel which is 1.0 within the

texture, again with a constant border color of zero. The dimensions of this texture
channel must match those of the texture being normalized, in order to ensure identi-
cal weights f are produced by the sampler hardware.

The overhead of adding the constant texture channel may or may not be signif-
icant, depending on the texture formats used and their content. For RGB textures
encoded with BC1 (DXT1), there is already an implicit alpha channel with a constant
one, so in this case there is no added cost. If, on the other hand, all channels in the
texture format contain information, another single-channel texture needs to be added,
bound to the pipeline, and sampled. If multiple textures are used, a single normal-
ization factor may be shared for all texture lookups as long as they use the same tex-
ture coordinates, sampler settings, resolution, and number of mip levels—-otherwise,
multiple normalization textures and/or lookups must be employed. The entire imple-
mentation described above is a subset of McDonald’s proposed method [2013], with
all parts related to sampling the adjacent textures removed.

Since GPUs shade at a granularity of 2× 2 pixel quads, so called helper pixels
with zero coverage may end up discarding all filter taps. Not handling these cases
results in a divide-by-zero and a NaN color, which is acceptable for most uses since
helper pixels’ values are seldom used. For cases where the screen-space derivatives of
the texture are used—e.g., for indirect texture lookups—this has to be handled more
carefully since finite difference calculations may include the helper pixels’ values. A
suitable solution is to clamp the user-provided footprint center to the texture extents
and perform a bi- or trilinear lookup for these cases.

GPU implementation. Pseudocode of our implementation is shown in Listing 1,
which also includes the implementation of McDonald [2013]. Note that Discard only

96

http://jcgt.org

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

1 float3 SampleTexture(float2 uv, int face_id) {

2 float4 c = texture.Sample(sampler_border, float3(uv, face_id));

3 #if defined(MCDONALD_2013)

4 for (int i = 0; i < 4; ++i) {

5 int id = NeighborID[face_id][i];

6 if (id < 0)

7 continue;

8 int mapping = NeighborMapping[face_id][i];

9 float2x3 transform = UVTransforms[mapping];

10 float2 neighbor_uv = mul(transform, float3(uv,1));

11 c += texture.Sample(sampler_border, float3(neighbor_uv, id));

12 }

13 #elif defined(CLAMP_IF_ZERO_COVERAGE)

14 if (c.a == 0)

15 c = texture.Sample(sampler_clamp, float3(uv, face_id));

16 #endif

17 return c.rgb / c.a;

18 }

Listing 1. Pseudocode snippet of our implementation and that of McDonald [2013], for
textures with the alpha channel filled with 1.0.

executes lines 2 and 17 (and optionally 14–15 to handle helper pixels as described
above), while Traverse executes lines 2–12 and 17. An example can be found in
Appendix A.

4. Results

In this section, we evaluate two aspects of our algorithm: performance and quality.

Performance. We render the scene in Figure 1 on two systems: one equipped with
an NVIDIA GTX680 discrete graphics card with a TDP1 of 195W, and one with an
integrated Intel Iris Pro 5200 graphics processor at a TDP of 47W shared between the
CPU and GPU. The scene uses a shader consisting of a texture lookup followed by a
very lightweight lighting calculation. The character consists of 1450 textures, and the
ground plane consists of another 1024 textures.

The measured execution times at various MSAA sampling rates are presented in
Table 1. Timings for sampling rates above one sample/pixel include resolving MSAA
surfaces into a single-sampled display surface. As can be seen, the execution times
of Discard are significantly shorter than those of Traverse at equal sampling rates.
For this scene, Discard with 4× MSAA outperforms Traverse without MSAA on
both architectures. Similarly, Discard with 8× MSAA outperforms Traverse with 2×
MSAA.

1TDP, or “Thermal Design Power”, indicates the power consumption of a device.

97

http://jcgt.org

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

Device Method
MSAA sampling rate

1× 2× 4× 8×
NVIDIA GTX680 Traverse 0.344 0.446 0.485 0.568
(195W TDP GPU) Discard 0.167 0.265 0.301 0.412
Intel Iris Pro 5200 Traverse 2.36 2.94 3.25 4.02

(47W TDP CPU+GPU) Discard 0.815 1.34 1.48 2.43

Table 1. Execution times in milliseconds of the scene shown in Figure 1, measured on two
architectures. At equal sampling rates, Discard is significantly faster than Traverse on both
architectures.

Quality. Due to the difficulty of choosing a fair ground truth, quality is hard to quan-
tify in a meaningful way. We therefore present multiple data points to assess qual-
ity. All images used for quality assessment were generated on an NVIDIA GTX680
graphics card, using 16× anisotropic sampling.

The difference between Traverse and Discard at various MSAA sample rates is
shown in Figure 5 (left). Note that this plot shows the difference between approxi-
mations, but does not indicate which of the two methods is responsible for “errors.”
The two methods grow more similar with an increased sampling rate as the quality

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold (Euclidean RGB distance)

10-5

10-4

10-3

10-2

10-1

100

R
at

io
 [

Er
ro

r
 T

hr
es

ho
ld

]

Deviation between approximations
1x
2x
4x
8x

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Threshold (Euclidean RGB distance)

10-5

10-4

10-3

10-2

10-1

100

R
at

io
 [

Er
ro

r
 T

hr
es

ho
ld

]

Deviation from reference
traverse 1x
traverse 2x
traverse 4x
traverse 8x

discard 1x
discard 2x
discard 4x
discard 8x

Figure 5. Quality assessment plots of the scene in Figure 1 with a 1000-frame camera orbit
and with various MSAA sampling rates. The x-axis is a 2-norm distance in linear RGB space,
and the y-axis is the fraction of all pixels that deviate by at least x (lower left is better).
Left: Difference between Traverse and Discard. While the difference diminishes with higher
sampling rates, the two methods do not converge to the same image. Right: Deviation from
a high-quality reference. At low sampling rates, Discard results in quality inferior to that of
Traverse. With high sampling rates, however, Discard results in quality slightly higher than
that of Traverse, as the MSAA quality surpasses the extrapolation accuracy of Traverse.

98

http://jcgt.org

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

of Discard increases. However, as expected, they do not converge towards the same
image, due to the differences between the approximations, as described in Section 3.

To evaluate the error compared to some desirable high-quality reference, we ren-
der the scene at high resolution using Traverse, and down-sample it by a factor of
8×8 using a Mitchell-Netravali filter [1988] with the typical filter parameters B=1/3,
C=1/3. This choice of reference is of significantly higher quality than what is obtained
with typical real-time texture filters and multi-sample filters.

Figure 5 (right) shows the deviations of Traverse and Discard as compared to
the high-quality reference. While most of the sources of error are shared between the
two methods—namely how polygon internals and geometric silhouettes are filtered—
they differ in the quality of texture seams. As expected, Traverse performs better at
low sampling rates. As the sampling rate increases, the errors of both Traverse and
Discard diminish due to the increased geometric filtering quality. The error of Discard
diminishes at a faster rate than that of Traverse, since texture seams are also improved
upon in addition to the silhouettes. Interestingly, at high sampling rates, the quality of
Discard slightly surpasses that of Traverse. The two methods are roughly equivalent
at the commonly targeted rate of four samples/pixel. Increasing the sampling rate by
a factor of two improves the quality of this scene more than switching from Discard
to Traverse, while costing less in terms of execution time.

5. Discussion

In practice, multi-sampled surfaces are most often resolved into single sampled dis-
play surfaces using a box filter. While this is far from the ideal sinc filter, it plays
nicely with the color replication inherent in MSAA. Even if the pixel shader out-
put is properly bandlimited, the replication of the shaded value to multiple samples
re-introduces higher frequencies into the signal. Applying a good filter to the multi-
sampled image would thus over-blur the image, while the box filter provides the de-
sired result (for polygon interiors, that is). This, in combination with its computational
simplicity, makes the box filter popular for real-time rendering.

Texture filtering in real-time graphics is usually performed using trilinear inter-
polation of a mipmap hierarchy at one or a few points, depending on anisotropy. In
general, this results in a significantly blurrier signal than would be obtained with a
good filter, and even blurrier compared to the box filter used for the MSAA resolve.

Despite the differences between the filters in practice, the proposed technique
produces good quality at eight samples per pixel and moderate quality at four samples
per pixel. There are two important shortcomings though: errors occur in places where
a human observer can more easily detect them (rather than on high-curvature regions,
for instance) and texture magnification is flawed due to limitations of current graphics
APIs, as discussed next.

99

http://jcgt.org

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

Figure 6. Left: Smooth interpolation at the junction of four textures during magnification.
Right: Interpolation artifacts at the very edge of textures, if no data is available in the outer-
most half-texel-wide band.

Texture magnification. The Direct3D API does not expose any mechanism to seam-
lessly interpolate texture data all the way to the edges where textures meet. The
outermost defined texels reside half-a-texel spacing inside the logical boundary of the
texture, and so interpolation at the very edge can only be controlled with texture ad-
dress modes. The compatibility layer of the OpenGL API includes a mechanism to
provide texture borders, i.e., texels residing half-a-texel spacing outside of the logi-
cal boundary of the texture. This allows seamless interpolation between textures, but
the feature cannot be used with compressed textures and is, therefore, of limited use.
This is a limitation of current graphics APIs that affects the quality of the proposed
method. The error is most prominent when there is insufficient resolution in the tex-
ture and magnification is required, as shown in Figure 6. Traverse is unaffected by
this issue, since it obtains border information by loading texels from the neighboring
textures. Purnomo et al. [2004] propose solving this issue by placing texels at the
texture edges. Unfortunately, this has not yet been incorporated into GPUs and the
common real-time graphics APIs.

Texture atlases. In real-time applications, multiple textures are often packed into
disjoint regions of a single image called an atlas. This strategy has been of importance
since it reduces the number of state changes necessary to bind different texture images
to the hardware graphics pipeline. When textures are packed into an atlas, the sampler
does not know where one texture ends and another begins. With large filter footprints,
there is always a risk of unintentionally sampling unrelated textures within the atlas
at coarse mip levels. To solve this issue, atlases can be replaced by multiple bindless
textures, i.e., textures that can be accessed from the shader using handles instead of
bind slots, which makes packing superflous.

Post-processed antialiasing. In recent times, there has been a trend of replacing
multi-sample anti-aliasing by post-process antialiasing methods [Jimenez et al. 2011].
These methods detect high contrast regions and try to recreate a smooth gradient. As
long as the post-process antialiasing method relies solely on color, it can, in theory, be

100

http://jcgt.org

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

applied to texture content as well. In practice, the nature of discontinuities across tex-
ture seams is different from the straight, high-contrast edges usually targeted by these
filters, and the resulting quality is sub-optimal. See the supplemental material for
an image rendered using Discard at a single sample per pixel, post-processed using
FXAA.

6. Final Remarks

A number of factors have led to the proposal of our technique: multi-sampling anti-
aliasing is widely adopted; anisotropic texture filtering is more or less expected in
modern applications; more and more GPUs support some form of bindless textures.
At the same time, asset production costs are higher than ever, and parametrization-
free texturing systems like Ptex have successfully simplified the production process
in the movie industry. All of the above are pieces of a puzzle that, once put together,
hints at the proposed texturing method.

It seems odd that seamless interpolation is only attainable by forgoing much of the
hardware acceleration for address calculation and mip level selection, and we would
like to see the graphics APIs and hardware evolve to allow seamless interpolation
where textures meet. Whether this goal is best reached by changing the location
of texels, availability of texture borders for compressed textures, or something else
entirely, is yet to be seen.

Acknowledgements

Thanks to Jacob Munkberg, Magnus Andersson, Jon Hasselgren, Jim Nilsson, and Tomas
Akenine-Möller for assisting with figures and for valuable feedback, and to Chuck Lingle and
Tom Piazza for supporting this research. Special thanks to Stephen Hill for reading countless
revisions and for making the content comprehensible.

References

BURLEY, B., AND LACEWELL, D. 2008. Ptex: Per-face texture mapping for production
rendering. In Eurographics Symposium on Rendering 2008, Eurographics Association,
Aire-la-Ville, Switzerland, 1155–1164. 91, 92

JIMENEZ, J., GUTIERREZ, D., YANG, J., RESHETOV, A., DEMOREUILLE, P., BERGHOFF,
T., PERTHUIS, C., YU, H., MCGUIRE, M., LOTTES, T., MALAN, H., PERSSON, E.,
ANDREEV, D., AND SOUSA, T. 2011. Filtering approaches for real-time anti-aliasing. In
ACM SIGGRAPH Courses, ACM, New York. 99

MCDONALD, JR, J., AND BURLEY, B. 2011. Per-face texture mapping for real-time ren-
dering. In ACM SIGGRAPH 2011 Talks, ACM, New York, SIGGRAPH ’11, 10:1–10:1.
http://doi.acm.org/10.1145/2037826.2037840. 92, 93

MCDONALD, JR, J., 2013. Eliminating texture waste: Borderless ptex. GDC 2013. https:
//developer.nvidia.com/gdc-2013. 92, 93, 95, 96

101

http://jcgt.org
http://doi.acm.org/10.1145/2037826.2037840
https://developer.nvidia.com/gdc-2013
https://developer.nvidia.com/gdc-2013

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

MITCHELL, D. P., AND NETRAVALI, A. N. 1988. Reconstruction filters in computer graph-
ics. SIGGRAPH Comput. Graph. 22 (June), 221–228. http://doi.acm.org/10.

1145/378456.378514. 98

PURNOMO, B., COHEN, J. D., AND KUMAR, S. 2004. Seamless texture atlases. In Pro-
ceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing,
ACM, New York, SGP ’04, 65–74. http://doi.acm.org/10.1145/1057432.

1057441. 92, 99

A. Appendix: Operation Example

∂P/∂x

∂P/∂y

∂P/∂x

∂P/∂y

∂P/∂x∂P/∂y∂P/∂x∂P/∂y

MSAA sample

Is
ot

ro
pi

c
A

ni
so

tro
pi

c
Rasterization / Shading Texture sampling

Covered multisample
Shading point

Pixel Sample (texel)
Sample tapBilinear tap

Texture

Without Discard With Discard
Fragment

Figure 7. Left: a fragment is rasterized, resulting in a pixel shader invocation. Right: The
texture sampler computes one (top) or a few (bottom) bilinear tap locations depending on
anisotropy. In practice, these are actually trilinear taps, but are shown as bilinear for simplic-
ity. The sample taps used to service the bi-/trilinear taps are shown in grey. Without Discard,
sample taps outside of the texture are weighted into the returned color. With Discard, sample
taps outside of the texture get zero weight, and do not affect the returned color.

∂P/∂x

∂P/∂y

∂P/∂x∂P/∂y

∂P/∂x

∂P/∂y

∂P/∂x∂P/∂y

Is
ot

ro
pi

c
A

ni
so

tro
pi

c

Without Discard With Discard
Rasterization / Shading Texture sampling

Figure 8. A fragment complementary to that in Figure 7. The texture coordinate lies outside
of the texture bounds, but mipmapping ensures that there are sample taps within the texture.

102

http://jcgt.org
http://doi.acm.org/10.1145/378456.378514
http://doi.acm.org/10.1145/378456.378514
http://doi.acm.org/10.1145/1057432.1057441
http://doi.acm.org/10.1145/1057432.1057441

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

Figure 7 shows an example of a texture lookup operation. The shader issues a texture
lookup just inside the texture edge. For shallow angles, a single trilinear tap is determined
by the texture sampler, while a set of trilinear taps are determined for steep angles. These
trilinear taps are converted to a set of sample taps with corresponding weights. With Discard,
any sample tap outside of the texture gets a zero weight. The remaining sample tap weights
are renormalized to account for the discarded sample taps.

Figure 8 shows an example where the texture lookup location lies outside of the texture
bounds. This is common when rendering with MSAA without centroid sampling. In most
cases, at least one sample tap will fall within the texture bounds due to the normal way mip
levels are selected. However, there are cases for which this is not true, as noted in Section 3.

Index of Supplemental Materials

The supplemental materials include images and videos of Traverse and Discard, as well as a
reference image and an error video, all depicting the scene in Figure 1:

readme.txt File containing this description of the supplemental materials.

discard_*x.png Rendering using Discard at different MSAA sampling rates.

traverse_*x.png Rendering using Traverse at different MSAA sampling rates.

reference.png High resolution (3840×4320) rendering, downsampled with a Mitchell-Netravali
filter to the same resolution as the other images (480×540).

fxaa_discard_1x.png FXAA 3.1 applied to a single-sampled rendering using Discard.

discard.mkv Animation showing temporal stability of Discard at different MSAA sampling
rates.

traverse.mkv Animation showing temporal stability of Traverse at different MSAA sam-
pling rates.

error.mkv Animation comparing error of Discard and Traverse with respect to the high-
resolution downsampled reference.

Author Contact Information

Robert Toth
Intel Corporation
Scheelevägen 19
Lund, SE-22370
robert.m.toth@intel.com

Robert Toth, Avoiding Texture Seams by Discarding Filter Taps, Journal of Computer Graph-
ics Techniques (JCGT), vol. 2, no. 2, 91–104, 2013
http://jcgt.org/published/0002/02/07/

103

http://jcgt.org
mailto:robert.m.toth@intel.com
http://jcgt.org/published/0002/02/07/

Journal of Computer Graphics Techniques
Avoiding Texture Seams by Discarding Filter Taps

Vol. 2, No. 2, 2013
http://jcgt.org

Received: 2013-03-17
Recommended: 2013-06-01 Corresponding Editor: Stephen Hill
Published: 2013-12-06 Editor-in-Chief: Morgan McGuire

© 2013 Robert Toth (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

104

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

