
Journal of Computer Graphics Techniques Vol. 3, No. 1, 2014 http://jcgt.org

Measuring Per-Frame Energy Consumption of
Real-Time Graphics Applications

Björn Johnsson Tomas Akenine-Möller
Lund University and Intel Corporation

Figure 1. Our power measurement station connected to an iPhone 4S.

Abstract

Energy and power efficiency are becoming important topics within the graphics community.
In this paper, we present a simple, straightforward method for measuring per-frame energy
consumption of real-time graphics workloads. The method is non-invasive, meaning that
source code is not needed, which makes it possible to measure on a much wider range of ap-
plications. We also discuss certain behaviors of the measured platforms that can affect energy
measurements, e.g., what happens when calling glFinish(), which ensures that all issued
graphics commands are finished executing. Measurements are done both on a smartphone and
on CPUs with integrated graphics processors.

60 ISSN 2331-7418

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

1. Introduction

The topic of both power and energy efficiency is increasingly important. It is recog-
nized as a crucial design point for several reasons. Not only is the number of com-
puting devices that are powered by batteries increasing, but heat dissipation, and thus
power, is becoming one of the major design constraints for computer chips [Borkar
and Chien 2011; Esmaeilzadeh et al. 2011].

Much work has been devoted to designing energy-efficient hardware and opti-
mizing on a hardware level by, for example, performing operations with lower pre-
cision [Pool et al. 2008; Pool et al. 2011b; Pool et al. 2011a], power-gating, i.e., by
turning off parts of the chip [Wang et al. 2011; Pool et al. 2011a], dynamic voltage
and frequency scaling (DVFS) [Mochocki et al. 2006], or evolving the memory hi-
erarchy [Fromm et al. 1997]. Even if some work advocates programmer input [Pool
et al. 2011b], the main focus is still on hardware implementation.

Other work is focused on writing rendering software optimized for energy us-
age [Collange et al. 2009; Johnsson et al. 2012; Koduri 2011; Ma et al. 2013; Ribble
2012], suggesting that programmers should optimize for power and energy in combi-
nation with rendering times. Pool et al. [2010] and Johnsson et al. [2012] showed that
it is not sufficient to measure at rendering times alone as an indicator for energy effi-
ciency, since different algorithms can have similar rendering times, but substantially
different energy consumption. Thus, it is necessary to also measure the power usage
to accurately evaluate the energy used by an algorithm. Another path of research is
to statistically model the power usage, as done by Nagasaka et al. [2010] and Pool et
al. [2010].

However, there has been no real discussion or comparison of the measurement
methods. After measuring power and energy efficiency in several projects, we have
gathered advice for accurately measuring energy consumption using a simple method.
Compared to our own previous method [Johnsson et al. 2012], we present and evaluate
a simpler method, which avoids blocking the rendering thread, and is non-invasive.
We also study the effects of blocking, to ensure that all submitted commands are ex-
ecuted until completion, and rendering a number of initial frames to achieve a steady
state for the application before measuring commences. Detailed power measurements
on both a mobile phone and on PCs with integrated GPUs are presented.

Similar to our previous method [Johnsson et al. 2012], the end result is per-frame
energy measurements. Measuring over a number of frames to achieve a mean energy
is easier and more straightforward; however, separating the energy on a per-frame
basis is often beneficial, since it enables the possibility to correlate energy to other
data collected per-frame and also to find bottlenecks and anomalies on a per-frame
basis.

61

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

2. Hardware Setup

We have performed our measurements on either an iPhone 4S with a PowerVR SGX
543MP2 GPU, a PC with an Intel i7 3770k with an Intel HD4000 integrated GPU, or
on a PC with an Intel i7 4850HQ with an Intel Iris Pro integrated GPU. The device is
connected to a measurement station (Figure 1), similar to the one used by Johnsson
et al. [2012], which is using two shunt current sensors that can accurately measure
current up to 1 A for the iPhone 4S and through a Hall effect current sensor for the
PC. Measurements on the iPhone are fed from a custom power supply with a known
voltage of 3.9 volts. However, on the PC, as the ATX specification has a ±5% error
tolerance, we simultaneously measure the voltage as well.

For the iPhone 4S, we intersect the current where the power supply connects to
the battery. For the Intel i7 3770k, we intersect at the ATX +12 V power connector,
which supplies the CPU with power, and for the Intel i7 4850HQ we intercept all
current and voltage supplied to the motherboard. As a result of intersecting the power
at different points, the measurements on each platform include different parts of that
platform. This may need to be considered when drawing conclusions. During all
measurements, we had the iPhone in airplane mode, i.e., all transmitting hardware
was shut off. We also shut off the adaptive screen brightness and set the brightness to
its lowest setting.

3. Measuring Method

Our previous method for measuring per-frame energy inserted timestamps at the be-
ginning of each frame, and called glFinish()) at the end, which blocked the ren-
dering thread until all rendering commands were finished, so that only work done
with respect to that particular frame was measured [Johnsson et al. 2012]. This may
have some benefits, for example, if you are interested in only the energy for all the
work done for a particular frame. In fact, something like this must be done if an archi-
tecture interleaves work over several frames, and if no energy from previous or future
frames are to be included in the current frame’s energy. For example, the Larrabee
software rasterizer [Seiler et al. 2008] interleaved work over frames, and early mobile
phone graphics architectures [Beets 2005] interleaved vertex shading (current frame)
and pixel shading (previous frame) in sort-middle architectures.

However, in many cases, measuring from the start of one frame to the start of
the next frame generates much more realistic energy consumption values, since that
is how rendering is done most of the time, i.e., without blocking until all commands
have finished executing and including interleaving effects (if any).

In the next section, we present a very simple method for measuring per-frame
energy consumption by a real-time graphics application. The input is regularly spaced
power measurements and a set of timestamps, either generated from the measured
application or detected in the power measurements.

62

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

Frame 1 Frame 2 Frame 3 Frame 4

Timestamp frame 2 Timestamp frame 3

Integrated energy
for frame 2

Idle 
power

Full rendering
power

Po
w

e
r

Time

Figure 2. Our new method is illustrated here, with timestamps at the beginning of each frame.
The integrated energy is from one frame’s timestamp to the subsequent frame’s timestamp.
As can be seen, this also includes the idle energy when no rendering is done.

3.1. Our Method

Our new method records a timestamp at the beginning of each frame and integrates
the power until the beginning of the next frame’s timestamp. It, therefore, guarantees
that no energy is unaccounted for during a sequence of frames, and it also includes
possible effects from algorithms exploiting inter-frame coherency. A schematic of the
method can be seen in Figure 2.

For workloads where the source code is not available, it is possible to detect the
beginnings of the frames in a semi-automatic way, by searching for features on the
curve. In most rendering workloads, it is easy for humans to visually detect the begin-
ning of each frame. An example is shown in Figure 3. We have developed software

Figure 3. Two subsequent frames measured during a rendering on an Intel i7 3770k with the
framerate capped to 30 frames per second. Note that the signature of the beginning of both
frames are quite similar. By letting the user mark the beginning of one frame, an automatic
search for the rest of the frame starts can be done.

63

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

Figure 4. This sequence of three frames is a more difficult scenario than that shown in Fig-
ure 3. This is measured from Unigine’s Heaven benchmark on an Intel i7 4850HQ with V-sync
disabled.

that, given a manually selected sample, records a window of samples around it. It
then searches the entire curve and marks samples with similar surroundings as the
recorded window by comparing the summed square distance between the curves. As
there most often are several subsequent samples where the surrounding is sufficiently
similar, it is necessary to find a limited segment of the curve where the samples sim-
ilarity is below a threshold and find the local minimum. As the characteristics of the
frames can alter over the course of the rendering, it is often required to mark frame
starts at different parts of the rendering and perform multiple searches.

We have been able to mark frames on a large collection of measurements with
different configurations and from different applications. For PC platforms, it greatly
simplifies the search if V-sync is enabled; however, for most cases, it is still possible to
find frame starts with V-sync disabled. Figure 4 shows a power curve covering three
frames, which are from a rendering of the Heaven benchmark by Unigine with V-
sync disabled. For the most difficult cases, semi-automatic search is not possible. Our
advice then is to enable V-sync, which is usually possible without changing the source
code. For some difficult cases, it is still possible to find distinct features repeated in
each frame. However, integrating between those features will provide an approximate
result, since the distinct features may be offset from the frame start. In this case,
our advice is to either accept the approximate result and avoid basing conclusion on
frames close to abrupt energy changes, or enable V-sync.

The described technique is non-invasive since no source code is needed (so that
timestamps can be generated and saved), and it makes it possible to measure energy
consumption on many more applications. If source code is available, however, we can
still insert our own timestamps.

64

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

3.2. Discussion

We also tried two other methods, which were less successful. One was a general-
ization of our previous method [Johnsson et al. 2012], where the same frame was
rendered r consecutive times. The flush at the end was still used, but with higher val-
ues on r, the energy converged to the same as our new method. In another attempt, we
tried to use b warm-up frames, followed by a timestamp, and then another r frames,
followed by an ending timestamp at the beginning of a trailing frame. To get one
measurement for one frame, b+ r+1 frames were rendered. Some architectures may
also detect inter-frame coherency, and either reuse calculations between frames when
possible or avoid costly memory transactions [Han et al. 2009]. Note that for both of
these methods, these optimizations will likely increase their level of success, which
can skew the results. Also, both methods needed many more frames of rendering
compared to our new method, which made them more time consuming.

4. Test Workloads

The rendering workload we used for our test on the iPhone 4S is a synthetic scene,
consisting of between 23 and 62 geometric objects per frame. Each object is a pre-
tessellated quadrilateral with 2048 triangles. We render a sequence of 24 frames, and
the framerate is capped to 30 frames per second. The vertex shader performs three
4× 4 matrix-vector multiplications, and the fragment shader performs two indepen-
dent texture lookups, a dot product, and a normalization. We use two 256 × 256
RGB textures, sampled with linear minification and magnification filtering without
mipmaps.

The main rendering workload used on PC is a camera path running through the
Sponza scene, with 32 spotlights accumulated in a single rendering pass using for-
ward rendering. It is capped at 30 frames per second and has been measured both
with each frame ending with a blocking call to glFinish() to ensure that all ren-
dering is finished, and without blocking. To show our ability to measure on real-world
applications, we have also measured on the Heaven benchmark by Unigine. For our
synthetic iPhone 4S application, we record timestamps in the application and syn-
chronize them with the power curve. For our PC applications, both the Sponza scene
and the Heaven benchmark, we detect the beginnings of the frames as described in
Section 3.1.

5. Observations

A set of important observations that we have made during several projects involving
power and energy measuring for graphics workloads are presented in this section.

65

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

5.1. Application Launch

To get accurate results, we first note that it is important to avoid basing conclusions
on the first few seconds after an application is launched. This is necessary since some
platforms appear to have an increased energy consumption during that period. As seen
in Figure 5(c), the difference between measuring immediately after launch, or waiting
for the platform to settle, can be significant. This can also be seen in Figure 7(c),
where our method, close to application launch has a rendering power and an idle

(a) A sequence of 9 frames, showing the power
drop after a number of initial frames on an iPhone
4S.

(b) Rendering a number of identical frames on an
Intel i7 3770k, showing that the energy settles af-
ter a few frames of rendering.

(c) Energy consumption on an iPhone 4S with different number of initial
frames.

Figure 5. (a) A sequence of frames showing a sudden drop in power, that occurs a number
of frames after the application is launched. Blue lines are added to ease comparison at both
the idle level and top plateau level after the drop. (b) A sequence of identical frames on an
Intel i7 3770k, measured directly after application launch, shows that the application settles
after a few frames. (c) Mean per-frame energy for renderings on an iPhone 4S as a function
of the number of disregarded initial frames. As can be seen, it is necessary to disregard about
48 frames after the application launch.

66

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

power that is approximately 0.05 W above the power obtained using our method with
a frame measured a few seconds after the the application is launched (left). According
to our measurements, the number of frames with an increased power is around 48 on
an iPhone 4S (see Figure 5(c)). As the decrease in power is sudden (see Figure 5(a)),
it is likely a result of a state change in the system on a chip, e.g., in its voltage and
frequency scaling [Mochocki et al. 2006]. On an Intel i7 3770k, it is not necessary
to perform more than a few frames for the application to settle. This can be seen
in Figure 5(b), where a sequence of frames, directly after the application launch and
with identical graphics workload, have been rendered and measured.

5.2. Effects of Pipeline Flushing

In Figure 6, we compare our new method (Section 3.1) and our previous method [Johns-
son et al. 2012]. These methods differ in two ways. First, the previous method mea-
sures from the beginning of a frame until the frame has finished rendering. Our new
method measures from the beginning of the frame until the beginning of the next
frame. As a result, when using the previous method, the idle energy in between
frames is not accounted for, and hence, the total energy of an entire rendering cannot
be obtained by using a sum over per-frame energies. This is, however, possible with
our new method, and this is usually what is desired.

The other difference is that the previous method calls glFinish() before record-
ing the second, ending timestamp. glFinish() blocks until all commands submit-
ted to the GPU have finished, which ensures that all rendering is performed before

Our method

Figure 6. Comparison between the method used by Johnsson et al. [2012] and our new, im-
proved method, showing measurements performed on an iPhone 4S, rendering our synthetic
scene. It is interesting to note is that while the introduction of glFinish() increases the
energy usage and not measuring the idle time between frames decreases it, the method used
in Johnsson et al. [2012] can result in both higher and lower amounts of energy measured.

67

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

(a) Our method

30

(b) At application launch (c) With glFinish()

Figure 7. Power measurements of frame 9 in the synthetic scene on an iPhone 4S.
(a) A frame after the application has settled; (b) a frame rendered soon after application
launch; (c) a frame ended with glFinish(), as in the method used by Johnsson et
al. [2012]. Note that directly after the application launch, both the idle power between frames
and the rendering power is approximately 0.05 W above the power of an identical frame after
the application has settled. Horizontal blue lines, at the level of idle power and the plateau
power level of our new method, are added to all three graphs, to aid the comparison. When
calling glFinish() between frames, the idle power is the same as the idle power using our
new method after the application has settled. However, the rendering power is significantly
higher. The observable rendering times for all three frames are nearly identical.

returning. Surprisingly, the power usage on an iPhone 4S increases when glFin-

ish() is used, which can be seen in Figure 7(c). This should be compared to our
method, which is shown in Figure 7(a). We also note that the idle power is compara-
ble. The only difference between these configurations is the introduction of glFin-
ish() in the previous method. As glFinish() blocks the rendering thread, a
consequence may be that the CPU is not able to sleep. In that case, that could be a
possible explanation for the raised power consumption.

However, our measurements on an HD4000 graphics processor, both with and
without glFinish(), revealed that there is very little difference. In our renderings
with a capped frame rate, the mean energy per frame is 629.73 mJ with a pooled
standard deviation of 21.07 mJ using glFinish(), and without flush, we obtain
630.18 mJ as mean energy per frame with a pooled standard deviation of 19.02 mJ.
The difference in mean energy is 0.45 mJ, which is substantially lower than the pooled
standard deviation, and hence a flush does not affect the measurements significantly.

Note also the small spikes at the end of the frames in Figure 7. These spikes
are a semi-regular feature occurring on an iPhone 4S, where one spike occurs ap-
proximately 33 ms apart. However, the frequency differs slightly from the capped
frequency of the rendering, and thus the spikes are not occurring at the same position
within the frames. There are also spikes of this size that have no observable frequency
or pattern. This is, with a high probability, impact from the operating system. How-
ever, as they have a relatively small impact on the measured energy (approximately

68

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

0.2 mJ per spike), and they usually occur 1− 2 per frame, the impact on the mea-
surements is of no major concern. It is important not to base any conclusions on
the placement or quantity of spikes in the presented frames, as they are both equally
common within all methods and are irregularly positioned within the frames.

5.3. Operating System Interference

We also studied the standard deviation on the iPhone 4S as a function of the number
of repeated measurements. Sometimes, we saw that the standard deviation increased
abruptly even though the number of repeated measurements increased. Investigating
this more closely, we saw that there were outliers that stretched over several frames
in each measurement it occurred. Examples of such frames can be seen in the top of
Figure 8, where the upper left is a normal frame and the upper right has an outlier.

0 5 10 15 20

Number of measurements

0

1

2

3

4

5

6

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

m
J)

Standard deviation

0

5

10

15

20

25

30

35

40

45

M
e
a
su

re
d
 v

a
lu

e
s 

(m
J)

Measured values

Last added value

Mean value

0 5 10 15 20

Number of measurements

0

1

2

3

4

5

6

S
ta

n
d
a
rd

 d
e
v
ia

ti
o
n
 (

m
J)

Standard deviation

0

5

10

15

20

25

30

35

40

45

M
e
a
su

re
d
 v

a
lu

e
s 

(m
J)

Measured values

Last added value

Mean value

Figure 8. Top: standard deviation (blue curve) as a function of the number of performed mea-
surements. Note that both figures use the same measurements, but represent different frames
in the sequence. Top left: standard deviation slightly decreasing with more measurements.
Top right: a decreasing standard deviation followed by a rapid increase as a result of an out-
lier. Bottom left: power curve from the iPhone 4S while it is not running any application.
These spikes, with an approximate duration of 90 ms, occur every five seconds. Bottom right:
each frame is supposed to be identical, however, a spike (bottom left) occurs in the middle
and is overlaid on top of the graphics power. As the duration of the spike is approximately
90 ms, it affects 3-4 frames at 30 fps. Those spikes are the root cause of standard deviation
increases (top right).

69

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

Examining the actual power curves of these measurements, we discovered groups
of frames with a significantly higher power signature, seen in the bottom right of
Figure 8. In the bottom left part of the same figure, we show a power measurement
on the iPhone 4S without any applications running. As can be seen, similar behavior
(distinct spikes) were measured. These spikes occur exactly five seconds apart.

Similarly, there are frames and series of frames when running on Intel i7 3770k,
where the power or rendering time, and sometimes both, are substantially higher.
However, there is not an easy pattern to distinguish, as on the iPhone 4S.

There are several methods to handle these outliers, depending on the purpose of
the measurement. If the sought energy is the actual energy used when rendering,
the outliers represent real energy usage that should be included. In that case, more
measurements might be needed to get a stable result. If the purpose of the measure-
ment is to isolate the actual graphics algorithm, it is possible to detect frames with
unacceptably high standard deviation, identify the outlier, and exclude it from the
measurement.

6. Conclusion

We have described a method which we have used extensively in our research, for mea-
suring per-frame energy consumption for graphics workloads. The method consists
of three straightforward steps:

1. Record power at a high frequency;

2. Find or sync a set of frame beginnings in the measured power recordings;

3. Integrate between frame beginnings to obtain per-frame energy.

Also, based on our experience with measuring energy, we have formed a set of best
practices to avoid the pitfalls we ran into. These best practices include

• Know your platform;

• Avoid changes to the measured workload;

• Disregard the first few seconds of the workload;

• Be aware that the operating system might interfere.

Depending on the platform, changes to the software can have substantial effect on the
energy consumption, for example, we have discovered that using glFinish(), as
a mean for isolating the consumption of a single frame, raises the power consump-
tion. General advice is to avoid changing the software at all, if possible, as it is hard
to ensure that a change does not affect the power consumption. Our method does not
depend on changes to the software. We have also experienced that on some platforms,

70

http://jcgt.org


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

applications have a higher power for a brief period after launching. If the expected
result is the general rendering power for an algorithm or applications, it is advisable
not to measure, or not to base conclusions on, the first seconds after launch. In addi-
tion, we have also observed that the operating system can start some process that also
substantially increases the measured energy.

However, these are only the pitfalls we have encountered. The most important
advice is to get to know the measured platform, as that is the only way to avoid
pitfalls that have not yet been encountered.

Acknowledgements

Thanks to Jim Nilsson, Chuck Lingle, and the Advanced Rendering Technology team at Intel.
Tomas Akenine-Möller is a Royal Swedish Academy of Sciences Research Fellow supported
by a grant from the Knut and Alice Wallenberg Foundation. The Heaven benchmark measured
in this paper are courtesy of Unigine.

References

BEETS, K. 2005. Developing 3D Applications for PowerVR MBX Accelerated ARM Plat-
forms. Information Quartely, 4, 3, 26–34. http://www.iqmagazineonline.com/
magazine/pdf/v_4_3_pdf/v_4_3_pg-26-34.pdf. 62

BORKAR, S., AND CHIEN, A. A. 2011. The Future of Microprocessors. Communications of
the ACM, 54, 5, 67–77. http://dl.acm.org/citation.cfm?id=1941507. 61

COLLANGE, S., DEFOUR, D., AND TISSERAND, A. 2009. Power Consumption of GPUs
from a Software Perspective. In 9th International Conference on Computational Science,
Springer-Verlag, Berlin, Heidelberg, 914–923. http://dl.acm.org/citation.

cfm?id=1560861. 61

ESMAEILZADEH, H., BLEM, E. R., AMANT, R. S., SANKARALINGAM, K., AND BURGER,
D. 2011. Dark Silicon and the End of Multicore Scaling. In 38th International Symposium
on Computer Architecture, ACM, New York, NY, 365–376. http://dl.acm.org/

citation.cfm?id=2000108. 61

FROMM, R., PERISSAKIS, S., CARDWELL, N., KOZYRAKIS, C., MCCAUGHY, B., PAT-
TERSON, D., ANDERSON, T., AND YELICK, K. 1997. The Energy Efficiency of IRAM
Architectures. In International Symposium on Computer Architecture, ACM, New York,
NY, 327–337. http://dl.acm.org/citation.cfm?id=264214. 61

HAN, K., FANG, Z., DIEFENBAUGH, P., FOR, R., IYER, R. R., AND NEWELL, D. 2009.
Using Checksum to Reduce Power Consumption of Display Systems for Low-Motion Con-
tent. In IEEE International Conference on Computer Design, IEEE Press, Piscataway, NJ,
USA, 47–53. http://dl.acm.org/citation.cfm?id=1792366. 65

JOHNSSON, B., GANESTAM, P., DOGGETT, M., AND AKENINE-MÖLLER, T. 2012. Power
Efficiency for Software Algorithms running on Graphics Processors. In High Performance
Graphics, Eurographics Association, Aire-la-Ville, Switzerland, 67–75. http://dl.

acm.org/citation.cfm?id=2383806. 61, 62, 65, 67, 68

71

http://jcgt.org
http://www.iqmagazineonline.com/magazine/pdf/v_4_3_pdf/v_4_3_pg-26-34.pdf
http://www.iqmagazineonline.com/magazine/pdf/v_4_3_pdf/v_4_3_pg-26-34.pdf
http://dl.acm.org/citation.cfm?id=1941507
http://dl.acm.org/citation.cfm?id=1560861
http://dl.acm.org/citation.cfm?id=1560861
http://dl.acm.org/citation.cfm?id=2000108
http://dl.acm.org/citation.cfm?id=2000108
http://dl.acm.org/citation.cfm?id=264214
http://dl.acm.org/citation.cfm?id=1792366
http://dl.acm.org/citation.cfm?id=2383806
http://dl.acm.org/citation.cfm?id=2383806


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

KODURI, R. 2011. “Power” of Realtime 3D Rendering. In Beyond Programmable Shading
(SIGGRAPH course), ACM, New York, NY. http://bps11.idav.ucdavis.edu/
talks/03-powerOf3DRendering-BPS2011-koduri.pdf. 61

MA, X., DENG, Z., DONG, M., AND ZHONG, L. 2013. Characterizing the Performance and
Power Consumption of 3D Mobile Games. Computer, 46, 4, 76–82. http://dx.doi.
org/10.1109/MC.2012.190. 61

MOCHOCKI, B., LAHIRI, K., AND CADAMBI, S. 2006. Power Analysis of Mobile 3D
Graphics. In Proceedings of the Conference on Design, Automation and Test in Europe,
European Design and Automation Association, Leuven, Belgium, 502–507. http://

dl.acm.org/citation.cfm?id=1131617. 61, 67

NAGASAKA, H., MARUYAMA, N., NUKADA, A., ENDO, T., AND MATSUOKA, S. 2010.
Statistical Power Modeling of GPU Kernels using Performance Counters. In Interna-
tional Conference on Green Computing, IEEE, Piscataway, NJ, 115–122. http://

citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.232.4758. 61

POOL, J., LASTRA, A., AND SINGH, M. 2008. Energy-Precision Tradeoffs in Mobile Graph-
ics Processing Units. In International Conference on Computer Design, IEEE, Piscataway,
NJ, 60–67. http://www.cs.unc.edu/~jpool/research/ICCD08/. 61

POOL, J., LASTRA, A., AND SINGH, M. 2010. An energy model for graphics processing
units. In International Conference on Computer Design, IEEE, Piscataway, NJ, 409–416.
http://www.cs.unc.edu/~jpool/research/ICCD2010/. 61

POOL, J., LASTRA, A., AND SINGH, M. 2011. Power-Gated Arithmetic Circuits for
Energy-Precision Tradeoffs in Mobile Graphics Processing Units. Journal of Low Power
Electronics, 7, 2, 148–162. http://www.cs.unc.edu/~jpool/research/

JOLPE2010/. 61

POOL, J., LASTRA, A., AND SINGH, M. 2011. Precision Selection for Energy-Efficient
Pixel Shaders. In High Performance Graphics, ACM, New York, NY, 159–168. http:
//www.cs.unc.edu/~jpool/research/HPG2011/. 61

RIBBLE, M. 2012. Power Friendly GPU Programming. In Beyond Programmable Shading
(SIGGRAPH course), ACM, New York, NY. http://bps12.idav.ucdavis.edu/
talks/05_ribblePowerRendering_bps2012.pdf. 61

SEILER, L., CARMEAN, D., SPRANGLE, E., FORSYTH, T., ABRASH, M., DUBEY, P.,
JUNKINS, S., LAKE, A., SUGERMAN, J., CAVIN, R., ESPASA, R., GROCHOWSKI, E.,
JUAN, T., AND HANRAHAN, P. 2008. Larrabee: A Many-Core x86 Architecture for
Visual Computing. ACM Transactions on Graphics, 27, 3, 18.1–18.15. http://dl.

acm.org/citation.cfm?id=1360617. 62

WANG, P.-H., YANG, C.-L., CHEN, Y.-M., AND CHENG, Y.-J. 2011. Power Gating
Strategies on GPUs. ACM Transactions on Architecture and Code Optimization, 8, 3,
13:1–13:25. http://dl.acm.org/citation.cfm?id=2019612. 61

72

http://jcgt.org
http://bps11.idav.ucdavis.edu/talks/03-powerOf3DRendering-BPS2011-koduri.pdf
http://bps11.idav.ucdavis.edu/talks/03-powerOf3DRendering-BPS2011-koduri.pdf
http://dx.doi.org/10.1109/MC.2012.190
http://dx.doi.org/10.1109/MC.2012.190
http://dl.acm.org/citation.cfm?id=1131617
http://dl.acm.org/citation.cfm?id=1131617
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.232.4758
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.232.4758
http://www.cs.unc.edu/~jpool/research/ICCD08/
http://www.cs.unc.edu/~jpool/research/ICCD2010/
http://www.cs.unc.edu/~jpool/research/JOLPE2010/
http://www.cs.unc.edu/~jpool/research/JOLPE2010/
http://www.cs.unc.edu/~jpool/research/HPG2011/
http://www.cs.unc.edu/~jpool/research/HPG2011/
http://bps12.idav.ucdavis.edu/talks/05_ribblePowerRendering_bps2012.pdf
http://bps12.idav.ucdavis.edu/talks/05_ribblePowerRendering_bps2012.pdf
http://dl.acm.org/citation.cfm?id=1360617
http://dl.acm.org/citation.cfm?id=1360617
http://dl.acm.org/citation.cfm?id=2019612


Journal of Computer Graphics Techniques
Measuring Per-Frame Energy Consumption

Vol. 3, No. 1, 2014
http://jcgt.org

Author Contact Information
Björn Johnsson
Department of Computer Science
Lund University
Box 118, 221 00 Lund, Sweden
bjorn.johnsson@cs.lth.se

Tomas Akenine-Möller
Department of Computer Science
Lund University
Box 118, 221 00 Lund, Sweden
tomas.akenine-moller@cs.lth.se

Björn Johnsson and Tomas Akenine-Möller, Measuring Per-Frame Energy Consumption,
Journal of Computer Graphics Techniques (JCGT), vol. 3, no. 1, 60–73, 2014
http://jcgt.org/published/0003/01/03/

Received: 2013-08-23
Recommended: 2013-11-18 Corresponding Editor: Marc Stamminger
Published: 2014-03-05 Editor-in-Chief: Morgan McGuire

c© 2014 Björn Johnsson and Tomas Akenine-Möller (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

73

http://jcgt.org
mailto:bjorn.johnsson@cs.lth.se
mailto:tomas.akenine-moller@cs.lth.se
http://jcgt.org/published/0003/01/03/
http://creativecommons.org/licenses/by-nd/3.0/

