

Measuring Per-Frame Energy Consumption of Real-Time Graphics Applications

Björn Johnsson & Tomas Akenine-Möller

Lund University & Intel Corporation

Computing devices increasingly battery powered

Computing devices increasingly battery powered

- Mobile phones
- Laptops
- Tablets
- Wearable technology

Computing devices increasingly battery powered

- Mobile phones
- Laptops
- Tablets
- Wearable technology

Smaller form factors require graphics

Computing devices increasingly battery powered

- Mobile phones
- Laptops
- Tablets
- Wearable technology

Smaller form factors require graphics

- Heat dissipation
- Battery size and time

Why not simulate?

Simulation models need to be trained

- Simulation models need to be trained
- Hardware specific

- Simulation models need to be trained
- Hardware specific
- Requires additional data: rendering time, primitive count...

- Simulation models need to be trained
- Hardware specific
- Requires additional data: rendering time, primitive count...
- Need to validate

Correlation

Correlation

Visually inspect energy-hungry frames

Correlation

- Visually inspect energy-hungry frames
- Other data collected per frame
 - Rendering time
 - Primitive count

Energy

Voltage U (volt)

Current I (ampere)

Power P (watt)

 $P = U^*I$

Energy E (joules)

$$E = \int P(t) dt$$

Goal: Per-frame energy

Visual & Parallel Computing Group

Goal: Per-frame energy

Method overview

Three main steps

Goal: Per-frame energy

Method overview

Three main steps

• Record current and voltage

Goal: Per-frame energy

Method overview

Three main steps

- Record current and voltage
 - To get power

Goal: Per-frame energy

Method overview

Three main steps

- Record current and voltage
 - To get power
- Acquire timestamps

Goal: Per-frame energy

Method overview

Three main steps

- Record current and voltage
 - To get power
- Acquire timestamps
- Integrate power to energy

Goal: Per-frame energy

Method overview

Three main steps

- Record current and voltage
 - To get power
- Acquire timestamps
- Integrate power to energy
 - For each frame

Step 1: Record current and voltage

Recording

• High frequency Data Acquisition Device (DAQ)

Step 1: Record current and voltage

Recording

- High frequency DAQ
- Point of connection
 - What is measured?
 - What is not measured?

Step 1: Record current and voltage

Recording

- High frequency DAQ
- Point of connection
 - What is measured?
 - What is not measured?

Step 1: Record current and voltage

Recording

- High frequency DAQ
- Point of connection
 - What is measured?
 - What is not measured?

DAQ

Step 1: Record current and voltage

Recording

- High frequency DAQ
- Point of connection
 - What is measured?
 - What is not measured?

Step 2: Acquire timestamps

Step 2: Acquire timestamps

Method 1: Recording

- Altering measured workload
 - Requires source code
- Synchronization required

Step 2: Acquire timestamps

Method 1: Recording

- Altering measured workload
 - Requires source code
- Synchronization required
 Method 2: Detect frame starts
- Detect in curve
 - Semi-automatic
 - Works without source code

Detecting frame starts

80

(intel)

Detecting frame starts

- Visually detect and mark
- Record surrounding

intel

Visual & Parallel Computing Group

Detecting frame starts

• Where does the frame start?

Intel Iris Pro

Detecting frame starts

• Where does the frame start?

Intel Iris Pro

Step 3: Integrate energy

Integrate between timestamps

intel

Step 3: Integrate energy

Integrate between timestamps

inte

Application launch

• First few seconds of rendering

Application launch

- First few seconds of rendering
- Significantly higher power

Application launch

- First few seconds of rendering
- Significantly higher power
 - 5-10% higher
 - Both load and idle

glFinish()

Visual & Parallel Computing Group

(intel

glFinish()

Blocks the application until commands are finished

glFinish()

- Blocks the application until commands are finished
- Raises the power

intel

Disturbance by Operating System

(intel)

Disturbance by Operating System

Few frames with higher power 2.0

Disturbance by Operating System

- Few frames with higher power 2.0
- 90ms every 5s

inte

Disturbance by Operating System

- Few frames with higher power 2.0
- 90ms every 5s
 - Same pattern without app running

Disturbance by Operating System

- Few frames with higher power 2.0
- 90ms every 5s
 - Same pattern without app running

Similar disturbances on most platforms

Disturbance by Operating System

- Few frames with higher power 2.0
- 90ms every 5s
 - Same pattern without app running

Similar disturbances on most platforms

- Mostly irregular
 - E.g. on integrated GPUs

Method recap

Method recap

Three steps

Method recap

Three steps

Measure current and voltage

Method recap

Three steps

- Measure current and voltage
- Record or detect frame starts

Method recap

Three steps

- Measure current and voltage
- Record or detect frame starts
- Integrate power to get energy per frame

Our advice

Our advice

• Avoid changing the workload

Our advice

- Avoid changing the workload
- Disregard the first few seconds after launch

Our advice

- Avoid changing the workload
- Disregard the first few seconds after launch
- Be aware of the operating system

Our advice

- Avoid changing the workload
- Disregard the first few seconds after launch
- Be aware of the operating system

Get to know your platform!

Our advice

- Avoid changing the workload
- Disregard the first few seconds after launch
- Be aware of the operating system

Get to know your platform!

Measure

Our advice

- Avoid changing the workload
- Disregard the first few seconds after launch
- Be aware of the operating system

Get to know your platform!

Measure Observe

Our advice

- Avoid changing the workload
- Disregard the first few seconds after launch
- Be aware of the operating system

Get to know your platform!

Measure Observe Find the pitfalls of your platform

Thank You

73

