
Journal of Computer Graphics Techniques Vol. 5, No. 3, 2016 http://jcgt.org

A Memory Efficient Uniform Grid Build Process
for GPUs

Eugene M. Taranta II Sumanta N. Pattanaik
University of Central Florida

1

0

 c
2

0 1 1 0

2 0 1 0

0 1 2 2

2 2

0 3 - -

7 8 4 -

1 2 11 12

6 9 13 -

Build

Scene Grid (References) Combined Sublists

Figure 1. Given a scene comprising a set of geometric primitives and a grid density, the
uniform grid build process yields a linear array of references, each reference pointing to a
sublist of geometric primitives—those that intersect the associated voxel.

Abstract

Uniform grids are a common acceleration structure used to speed up intersection queries
across various rendering and physics applications. These structures are attractive because
they are easy to understand and exhibit fast build and query times. Recent advances in par-
allel algorithms have further increased their construction speed, although they still require
substantial memory allocations throughout the build process and in their final representation.
To address these memory consumption issues, we introduce a novel but easy to understand
approach. Although our process is general, we demonstrate its effectiveness in an example
real-time ray-tracing application where we see a 28% to 38% reduction in memory allocated
for optimal grid densities and a 31% to 38% reduction in their final memory footprint. As grid
densities increase, savings approach 45% and higher. We also show that our process does not
sacrifice performance in terms of overall frame rates.

50 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

1. Introduction

A wide variety of applications currently leverage uniform grids. To illustrate a few
examples, rendering and physics simulations often use grids to accelerate collision
detection [Ericson 2004; Millington 2010]. Zheng et al. [2012] use grids to carry
out self-compacting concrete flow simulations and predict flow and fill behaviors
in complex structures. Razavi et el. [2015] describe an educational haptics-based
drilling simulation tool for dentistry. Their system, in part, employs a hashed uni-
form grid structure. In order to visualize millions of dynamic particles, Krone et al.
[2012] utilize marching cubes over a uniform grid of density estimates; and Reda et
al. [2013] embed glyphs in a similar density grid to render solid ball-and-stick sur-
faces and volumes for interactive visualizations of molecular boundaries. One can
also use grid structures to assist with photon gathering in progressive photon map-
ping [Hachisuka and Jensen 2010; Pedersen 2013], map overlaps [Magalhães et al.
2015], smoothed particle hydrodynamics [Akinci et al. 2013], collision detection of
polydisperse sphere packings [Weller et al. 2013], and ray tracing [Kalojanov and
Slusallek 2009], as well as many others approaches. Consequently, uniform grid im-
provements have broad appeal given their adaptability to a wide range of problems.
In this paper, we specifically deal with build process and accelerator representation
inefficiencies with respect to memory utilization. The approach we take is based on
our previous work [Taranta II and Pattanaik 2014], which leverages recent advances
in GPU hardware to accelerate atomic operations.

To better understand the landscape, Fujimoto et al. [?] first described uniform
grids as a 3D extension of raster grids for ray tracing, although at the time they called
their accelerator SEADS: spatially enumerated auxiliary data structure. More than
twenty years later, Kalojanov and Slusallek [2009] developed the first GPU-based
parallel algorithm for uniform grid construction, which Kalojanov et al. [2011] later
extended to two-level grids. One issue with both approaches is that the workload
between threads is nonuniform because each thread works on a different primitive,
e.g., a triangle; and since primitives vary in size, the effort required to process a
primitive also varies. Liu and Rokne [2013] addressed this issue by considering
primitive-cell pairs—each thread analyzes exactly one triangle-cell pair in order to
evenly distribute the workload, which also leads to more precise grid definitions. We
further improved the process by eliminating an expensive sorting step that remained
in the build pipeline by utilizing atomic operations [Taranta II and Pattanaik 2014].
Although the state of the art is now highly optimized, the build process and acceler-
ator still consume large amounts of memory, thereby limiting grid density and scene
complexity.

As we previously saw a significant improvement in build speed using atomic func-
tions, we now take this a step further to eliminate a subset of memory allocations that
occur throughout the build process as well as to reduce the accelerator’s final memory

51

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

footprint. We achieve this reduction by employing additional atomic operations on
housekeeping data and by replicating select calculations between steps, rather than
storing intermediate results in cache. To evaluate our new build process, we use ray
tracing as an example application; however, our approach is general and can be ap-
plied to any situation in which scene data is stored in a regular grid structure. As
we demonstrate, these modifications have a slight negative impact on build time, al-
though rendering performance improves, and so the overall frame rate remains rela-
tively unchanged. More importantly, we also show that memory utilization in all tests
is significantly reduced.

2. Build Process

Uniform grids are a spatial subdivision structure that partitions a scene into equally
sized, axis-aligned rectangular cuboids called voxels. Common approaches enumer-
ate these voxels and put them into one-to-one correspondence with a linear array.
Namely, each occupied voxel in the accelerator contains a reference to a list of prim-
itives that intersect it. In a ray-tracing application, to resolve ray-primitive collision
queries, one can use a 3D-DDA [Amanatides and Woo 1987] to incrementally march
a ray through the scene one voxel at a time. Upon passing through an occupied cell,
the ray is cast against its associated geometry to test if the ray intersects any of the
voxel’s primitives. Given a scene comprising a set of geometric primitives and a spec-
ified grid density, our goal is to efficiently construct a uniform grid accelerator using
a GPU (see Figure 1).

As an overview, the construction process is made up of three phases: Compute-
Coarse-Pairs, Evaluate-Coarse-Pairs, and Extract-Grid. The first phase determines the
maximum number of possible triangle-voxel overlaps that may exist in the scene by
inspecting the axis-aligned bounding box (AABB) of each triangle. Since the AABB
of a triangle often overlaps more voxels than the triangle itself, phase two evaluates
each individual triangle-voxel coarse pair to determine if a true overlap exists. Finally,
the last phase constructs the acceleration structure using key information collected in
the prior phases. In what follows, we first detail the new construction process and
then highlight how our approach differs from the state of the art.

As discussed, the Compute-Coarse-Pairs phase determines the maximum number
of triangle-voxel overlaps that may exist in the current geometric configuration; see
Figure 2 and Algorithm 1. We first allocate and zero-initialize the coarse pairs count
array in order to store the overlap count upper bound for each triangle. The process
then calculates the AABB of each triangle in parallel and stores each AABB’s voxel
occupancy count in the coarse pairs count array. Next, we cache the last coarse pairs
count element and perform an in-place exclusive scan [Sengupta et al. 2007] to con-
vert the array into a set of indices. Finally, we add the last element of the indices array

52

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

1

0

 c

Coarse Pairs
Count

6

4

9

2

Indices

0

6

10

Exclusive Scan

Total Coarse Pairs Count
9 + 10 = 19

Figure 2. Compute-coarse-pairs. The maximum number of triangle-voxel overlaps that may
exist in the current configuration is determined by casting the AABB of each triangle against
the grid. Coarse pair counts are thereafter converted into indices for use in the next phase, and
the total coarse pairs count is determined from the last indices and coarse pairs count elements.

Algorithm 1. Compute-Coarse-Pairs ()
IntArray coarsePairsCnt[triangleCount] = {0}
foreach triangleId ∈ [0, triangleCount− 1] in parallel

AABB voxBB = VOXEL-BOUNDING-BOX(triangleId)
coarsePairsCnt[triangleId] = GET-VOXEL-COUNT(voxBB);

int totalCoarsePairs← coarsePairs[triangleCount− 1]

indices← EXCLUSIVE-SCAN(coarsePairs)
totalCoarsePairs← totalCoarsePairs+ indices[triangleCount− 1]

with the cached count to yield the total coarse pairs count. Note that “pair” refers to
a single AABB-voxel overlap, which may or may not represent a real triangle-voxel
overlap.

With all coarse pairs now identified, the Evaluate-Coarse-Pairs phase extracts all
real triangle-voxel overlaps from the candidate overlaps; see Figures 3 and 4 as well
as Algorithm 2. First, the process allocates a zero-initialized array equal in size to the
total coarse pairs count. We refer to this as the tags array, and for each value stored
in the indices array, we set the corresponding tag element to one, except element zero
which remains zero. Next, we perform an in-place inclusive scan [Sengupta et al.
2007] on the tags array so that each element becomes a valid triangle ID. Once this
transformation is complete, we refer to the tags array as the coarse pairs array, and
there is still one entry for every AABB-triangle overlap.

We can now determine the precise overlaps. We start by allocating the overlap
counts array, which is equal in size to the number of voxels in the scene and is used to
track the number of real overlaps that exist per voxel. Next, we evaluate each coarse
pair in parallel. Since each parallel task receives a unique task ID, we use this ID
to determine which coarse pair to evaluate. That is, we use the task ID to select a

53

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

Indices

0

6

10

Tags (Linear Array)

0 0 0 0 0

0 1 0 0 0

1 0 0 0 0

0 0 0 0

Inclusive Scan

Coarse Pairs (Linear Array)

0 0 0 0 0

0 1 1 1 1

2 2 2 2 2

2 2 2 2

Figure 3. Coarse-pairs-evaluation I: The linear tags array is allocated, which is total coarse
pairs count in length. For each index in indices except the first, its corresponding tag is set
to 1. Finally, the tags array is converted into the coarse pairs array using an inclusive scan.

Coarse Pairs

T:0 T:0 F:0 T:0 T:0

T:0 T:1 T:1 T:1 T:1

F:2 T:2 F:2 T:2 T:2

T:2 T:2 T:2 F:2

1
 c

2

0

Overlap Counts

1 1 0 0

1 1 2 0

1 1 1 1

1 2 1 0

Set True

Set False

+1

+1

Figure 4. Coarse-pairs-evaluation II: Each coarse pair is evaluated in parallel to determine if
the triangle truly overlaps the voxel. When an overlap exists, the most significant bit of the
coarse pair element is set to true and its associated overlap counter is atomically incremented.

triangle ID from the coarse pairs array. Then with a triangle selected, we look up its
starting position from the indices array. The difference between the task ID and the
starting position gives us a voxel ID to process relative to the triangle’s AABB—we
treat the triangle’s AABB as a region that is subdivided and enumerated into its own
voxel set. For example, in Figure 3, task ID 8 processes the third voxel of triangle 1’s
AABB. Based on the indices array, triangle 1’s starting position in the coarse pairs
array is 6. Therefore, the task processes voxel ID 2 of triangle 1’s AABB, i.e., 8-6=2.
Thereafter, we convert the relative voxel ID into an exact grid voxel ID, from which
we then calculate the grid voxel’s AABB. Using the grid voxel’s bounding box, we are
able to perform a fast triangle-box overlap test [Akenine-Möller 2002] to determine
if the triangle and grid voxel actually overlap. If an overlap is found, we set the most
significant bit of the coarse pairs element to indicate that an overlap was identified. At
the same time, we also atomically increment the corresponding count in the overlap
counts array (see Figure 4). There is also a global overlap counter, not shown in the
figure, that we atomically increment every time a real overlap is found. This can be
done efficiently by synchronizing parallel tasks. In CUDA [Nickolls et al. 2008], for

54

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

Algorithm 2. Evaluate-Coarse-Pairs ()
// Part I (Figure 3)

IntArray tags[totalCoarsePairs] = {0}
foreach triangleId ∈ [1, triangleCount− 1] in parallel

tags[indices[triangleId]] = 1

coarsePairs← INCLUSIVE-SCAN(tags)

// Part II (Figure 4)

int flags← AllocRequiredBitF lag +AllocInProgBitF lag

IntArray overlapCounts[gridSize] = {flags}
int totalOverlapCnt← 0

foreach coarsePairsIdx ∈ [0, totalCoarsePairs− 1] in parallel
int triangleId← coarsePairs[coarsePairsIdx]

int triAabbV oxId← coarsePairsIdx− indices[triangleId]

int gridV oxId← CONVERT-TO-GRID-VOX(triangleId, triAabbV oxId)
if OVERLAP(triangleId, gridV oxId) then

coarsePairs[coarsePairsIdx]← triangleId+OverlapDetectedBitF lag

ATOMIC-INCREMENT(overlapCounts[gridV oxId])
ATOMIC-INCREMENT(totalOverlapCount[gridV oxId])

example, one can use a warp-wide reduction to coalesce up to thirty-two updates into
a single atomic write.

With all of the true overlaps identified, we now enter the Extract-Grid phase as
shown in Figure 5 and Algorithm 3. Based on the global overlaps count found in the
previous step, we allocate the triangle list array, which will ultimately store the indi-
vidual overlapping triangle list for each voxel. By the end of this phase, we will have
converted the overlap counts array into the grid array, and each occupied voxel will
have a reference into the triangle list where the overlapping triangle IDs are stored.
Now to begin extraction, we again evaluate each coarse pair element in parallel. This

Overlap Counts

1 1 0 0

1 1 2 0

1 1 1 1

1 2 1 0

Triangle List

0 1 1 0

2 0 1 0

0 1 2 2

2 2

Grid

0 3 - -

7 8 4 -

1 2 11 12

6 9 13 -

Convert

Figure 5. Extract-grid. Overlaps counts are converted into triangle list indices as the triangle
list is filled in. Sublists for some grid voxels are highlighted though none of the additional
flags (i.e., allocation required, etc.) are shown.

55

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

Algorithm 3. Extract-Grid ()
int triangleListIdx← 0

grid← overlapCounts // alias

foreach coarsePairIdx ∈ [0, totalCoarsePairs− 1] in parallel
int triangleId← coarsePairs[coarsePairIdx]

if NOT-BIT-SET (triangleId, OverlapDetectedBitF lag) then
return

triangleId← triangleId−OverlapDetectedBitF lag

int triAabbV oxId← coarsePairsIdx− indices[triangleId]

int gridV oxId← CONVERT-TO-GRID-VOX(triangleId, triAabbV oxId)

int terminateTriSubList← 0

int oldV alue←ATOMIC-CLEAR(grid[gridV oxId], AllocRequiredBitF lag)

if BIT-SET(oldV alue, AllocRequiredBitF lag) then
int cnt← oldV alue− (AllocRequiredBitF lag +AllocInProgBitF lag)

int start← ATOMIC-ADD(triangleListIdx, cnt)
int idx← start+ cnt− 1

ATOMIC-WRITE(grid[gridV oxId], idx)
terminateTriSubList← TerminateBitF lag

else
while BIT-SET(oldV alue, AllocInProgBitF lag) do

oldV alue←ATOMIC-READ(grid[gridV oxId])
int oldIdx←ATOMIC-DECREMENT(grid[gridV oxId])
int idx← oldIdx− 1

triangleList[idx]← triangle+ terminateTriSubList

time, if the most significant bit of the coarse pairs element is set, then the overlap is
valid and we save this information into the grid and triangle list arrays. Note that we
convert the task ID into a grid voxel ID using the same technique as before. However,
not discussed previously, is that we also set the two most significant bits of each ele-
ment in the overlap counts array. We use these two bits as flags to help synchronize
construction of the uniform grid, where one bit is the allocation required flag and the
other is the allocation in progress flag. When a coarse pairs element contains a true
overlap, the process reads the corresponding overlap counts element and simultane-
ously clears the allocation required flag; for example, in CUDA we use an atomic-and
operation to simultaneously read the current value and clear the allocation required
flag. From here, depending on the state of the flags, we take one of three actions:

1. Allocation required. If the allocation required flag is set, the process needs to
reserve enough space in the triangle list to store the sublist of triangle IDs over-
lapping the associated grid voxel. For this condition, we use a zero-initialized
global counter called triangle list index. Let n denote the associated overlap
count for the voxel, minus the upper bit flags. Further, let i denote the current

56

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

triangle list index value. When an allocation is required, we first atomically in-
crement the triangle list index by n, thereby reserving space in the triangle list
array at locations [i, i+ n− 1]. Next, we write the triangle ID into the triangle
list array at position i+ n− 1. We also write i+ n− 1 into the overlap counts
element, thus converting the counter into a grid array element—a reference into
the triangle list. Note that this update also clears the allocation in progress flag.

2. Allocation in progress. In this case, a different task cleared the the allocation
required flag, but the actual allocation work is not complete. Therefore, the
thread “spins” by continuing to read the overlap counts element until the allo-
cation in progress flag clears. Once both flags are clear, the process continues
into the allocation complete state.

3. Allocation complete. In this state, both flags are clear and the overlap counter
contains a triangle list reference. The process atomically then decrements the
reference stored in the grid element and stores the associated triangle ID in the
triangle list at the specified location. After all of the overlaps are processed, the
grid array element will hold the value i, where the triangle ID sublist starts.

For traversals through a uniform grid to work, the ray-tracing process must know
which grid voxels are occupied and where each triangle sublist terminates. To address
the former, if the allocation in progress flag is still set, then the voxel is empty. To
address the latter, when an allocation occurs, we also set the most significant bit of the
triangle ID written into position i + n − 1. Therefore, when the ray-tracing process
hits an occupied voxel, it can walk through the triangle sublist until it encounters this
bit flag.

2.1. Summary of Modifications

The previous approach differs from our new build process in two ways. First, the
previous approach stores true voxel overlaps in a separate array, and so in the Extract-
Grid phase, no additional work is required to calculate the associated voxel IDs. Our
method, however, eliminates this extra storage by using bit flags in the coarse pairs
array, but, as a consequence, we also have to later recalculate voxel IDs. Second, the
previous approach stores a triangle list start and end reference per voxel, whereas our
method only requires a single reference. This optimization, however, comes at the
cost of some additional atomic operations to synchronize access to the triangle list
during the extract-grid phase. Although these changes result in additional work, we
show in our evaluation that differences in performance are minor, especially when
considering the reduction in memory usage.

57

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

3. Evaluation and Results

To evaluate our new build algorithms, we developed a ray-tracing application and
tested twelve different scenes of varying complexity over a wide range of grid res-
olutions. The scene complexity ranged between 261, 978 and 10, 500, 549 triangles.
Following recommendations from prior work [Cleary et al. 1983; Wald et al. 2006],
we defined the grid density λ parameter as

Nx = dx
3

√
λN

V
, Ny = dy

3

√
λN

V
, Nz = dz

3

√
λN

V
,

where vector ~d is the extent of the scene’s bounding box, V is its volume, andN is the
number of primitives. Further, we rendered all scenes at 1920 x 1280 using primary
ray tracing and dot-normal shading. We made this decision to verify that our uniform
grid modifications did not impact traversal performance, since coherent rays are most
likely to experience performance degradation due to changes to the underlying accel-
erator. Further, we also rendered each scene 1000 times with the camera position and
orientation randomized in each iteration, where the camera position is selected from
anywhere within the scene’s AABB. This randomization ensures that open views, ob-
structed views, and combinations thereof are evaluated across both conditions (with
and without our accelerator modifications). The test system was a 3.2 GHz Quad-
Core Intel Xeon Mac Pro with 6 GiB of 1066 MHz DDR3 memory, and an SSD; and
the GPU was an NVIDIA GeForce GTX 680 GPU with 2048 MiB of memory.

We present memory usage in Figure 6 for the Conference Room and Matinee
scenes, and build time and rendering performance for the same test scenes in Fig-
ure 7. Note, however, that these trends are identical for all test scenes. For all practical
grid densities, our method improved memory usage. Even for the Conference Room
scene at its lowest density (λ = .5), our approach reduced the maximum amount
of memory consumed during the build process by 25%, and these savings increase
rapidly, appearing to hit an asymptote near 48%. Our method also improved the fi-
nal accelerator’s memory footprint in a similar way for all scenes. While ray-tracing
applications using a standard uniform grid are unlikely to select such high grid den-
sities, applications that build hierarchal data structures upon uniform grids or utilize
grids in a different fashion may benefit from these additional savings. In the Mati-
nee scene, improvements start near 20%, rise rapidly, and level off near 47%, which
again is similar for all scenes. With respect to speed, our approach slightly improves
rendering time in milliseconds for all grid resolutions, whereas the build time suffers
slightly. These differences balance out in such a way that the aggregate time spent
building and rendering each frame remains relatively constant; see the speedup curve
in Figure 7.

58

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

1 2.5 5 10 20
λ Grid Density (Log Scale)

0

20

40

60

80

100

M
e
m

o
ry

 A
llo

ca
te

d
 i
n
 M

iB

Conference Room
Memory Usage

Percentage Decrease (Final)
Percentage Decrease (Build)
Standard (Build)
Standard (Final)
Optimized (Build)
Optimized (Final)

0

10

20

30

40

50

P
e
rc

e
n
ta

g
e
 D

e
cr

e
a
se

1 2.5 5 10 20
λ Grid Density (Log Scale)

0

50

100

150

200

250

300

350

M
e
m

o
ry

 A
llo

ca
te

d
 i
n
 M

iB

Matinee
Memory Usage

Percentage Decrease (Final)
Percentage Decrease (Build)
Standard (Build)
Standard (Final)
Optimized (Build)
Optimized (Final)

0

10

20

30

40

50

P
e
rc

e
n
ta

g
e
 D

e
cr

e
a
se

Figure 6. Memory usage for the Conference Room and Matinee scenes with varying grid
densities, using the state-of-the-art build process and our memory optimized build process,
shown as standard and optimized, respectively. Shown are both the maximum memory con-
sumed during construction and the final memory required: build and final. The curves shown
here are similar to those in all of our test scenes, where memory savings start above 20%
with λ = 0.75 and quickly approach an asymptote of a better than 45% reduction in mem-
ory utilization. Further, note that the standard (final) memory requirement is greater than the
optimized (build) requirement for medium and larger densities.

59

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

1 2.5 5 10 20
λ Grid Density (Log Scale)

0

5

10

15

20

25

30

T
im

e
 i
n
 M

ill
is

e
co

n
d
s

Conference Room
Render and Build Time

Standard (Render)
Optimized (Render)
Combined Speedup
Standard (Build)
Optimized (Build)

0.6

0.8

1.0

1.2

1.4

S
p
e
e
d
u
p

1 2.5 5 10 20
λ Grid Density (Log Scale)

0

5

10

15

20

25

T
im

e
 i
n
 M

ill
is

e
co

n
d
s

Matinee
Render and Build Time

Standard (Render)
Optimized (Render)
Combined Speedup
Standard (Build)
Optimized (Build)

0.6

0.8

1.0

1.2

1.4

S
p
e
e
d
u
p

Figure 7. Rendering and build times for the Conference Room and Matinee scenes with
varying grid densities, using the state-of-the-art build process and our memory optimized
build process, shown as standard and optimized, respectively. The curves shown here are
similar to those of most of our test scenes (exceptions are noted in the discussion, Section 4).
In test scenes with lots of open space such as Cyrtek, The Bedroom, and those above, there
is a noticeable difference in rendering time as the density increases, where our approach is
faster.

60

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

Standard Memory Optimized % Reduction
Scene λ Max Final λ Max Final Max Final
Crytek Sponza 3.5 20 10 3.5 12 6 37 34
Conference Room 3.0 16 9 4.0 12 7 25 22
The Bedroom 3.0 23 12 3.0 15 8 35 33
The Shop Girls 3.5 24 15 3.5 16 9 35 38
Science Fiction 1.5 24 13 1.5 17 9 28 33
Matinee 1.75 36 17 1.75 24 11 32 33
Christmas 2.0 50 25 2.5 37 20 25 21
Artistry 2.5 70 29 2.5 43 18 38 37
Natural History 2.0 70 34 2.0 47 23 33 32
Hairball 0.75 234 65 0.75 152 56 35 13
San Miguel 0.5 188 88 0.75 171 79 9 10
Asian Dragon 2.5 263 178 3.0 195 124 26 30

Table 1. Maximum and final MiB memory allocations using the standard build process
and our memory optimized process. The grid densities (λ) selected are those that maximize
combined build and render performance. Note that in some cases the memory optimized
density is larger and, therefore, the percentage reduction result compares two different
densities.

Standard Memory Optimized Combined
Scene λ Build Render λ Build Render Speedup
Crytek Sponza 3.5 2.85 7.63 3.5 2.83 7.41 1.024
Conference Room 3.0 2.39 19.34 4.0 2.53 18.55 1.031
The Bedroom 3.0 3.25 17.56 3.0 3.26 17.02 1.026
The Shop Girls 3.5 3.12 20.67 3.5 3.20 20.29 1.013
Science Fiction 1.5 3.17 13.82 1.5 3.35 13.27 1.022
Matinee 1.75 4.40 16.21 1.75 4.62 15.78 1.010
Christmas 2.0 5.57 18.20 2.5 6.53 17.34 0.996
Artistry 2.5 7.01 29.65 2.5 7.44 29.26 0.999
Natural History 2.0 7.60 16.60 2.0 8.30 16.22 0.987
Hairball 0.75 27.99 45.78 0.75 31.53 45.96 0.952
San Miguel 0.5 23.36 27.02 0.75 28.31 25.67 0.933
Asian Dragon 2.5 19.40 60.00 3.0 22.68 57.00 0.997

Table 2. Speed comparison of the state-of-the-art build process and our memory optimized
build process for each test scene, shown as standard and memory optimized, respectively. The
grid densities (λ) selected are those that maximize combined build and render performance.
All times are in milliseconds. The combined speedup compares the best standard to the best
memory optimized performance.

61

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

Table 1 lists memory consumption results for the state-of-the-art build process
alongside our memory optimized build process for the various test scenes. We se-
lected those results that gave the best combined build and rendertime performance.
In all cases, our new build process improves memory usage, even in situations where
the optimal grid density is larger using the new process, such as with the San Miguel
scene. For scenes having an equal optimal density, maximum memory usage drops by
28–37% and the final output size also drops by 13–34%. In Table 2, we show build
and render millisecond time performance for the same conditions. As is consistent
with the previously discussed results, our process marginally impacts build perfor-
mance, though we are able to render the scenes slightly faster. In the end, the overall
difference in combined speed is negligible—less than 2%. Two notable exceptions
are the Hairball and San Miguel scenes, which we discuss further in the next section.

4. Discussion

Based on the results shown in Figure 6, we were able to significantly improve memory
utilization for both the build process and final output. As an example, the previous
method requires 232 MiB to construct the accelerator for the Natural History scene at
its optimal grid density (λ = 2.0), whereas with our method, memory consumption
is now down to 163 MiB, a 37% reduction in memory usage. The size of the uniform
grid itself also dropped from 34 to 23 MiB, a 32% improvement, which is similar for
most scenes. An additional benefit of our approach is that for medium to large grid
densities, our process’s maximum memory consumption is less than the size of the
accelerator generated by the previous process. Therefore, our approach allows one to
reach higher grid densities where insufficient memory resources previously posed a
problem; this will benefit a variety of practical applications. We observed this benefit
in some of our own test scenes. Specifically, the maximum density of the Hairball
scene was 12 and 30 for the previous and new processes, respectively. Similarly,
Asian Dragon peaked at 14 and 18, and San Miguel at 4 and 10.

In Table 2 we see that the combined rendering and build performance is mostly un-
affected. In general, our approach slightly impacts build performance, but marginally
improves rendering performance. This effect on build performance is likely due to
the repeated work required to calculate coarse pair voxels in the extract-grid step (see
Algorithm 3) and because of the additional atomic operations, which falls in line with
the slight decline observed in performance as the scenes become more complex. With
respect to the speedup in rendering performance, this is likely due to the fact that
for each voxel through which a ray passes, we only access one triangle list refer-
ence; whereas, the previous approach accesses two references, so scenes with vast
amounts of empty space benefit from our optimization. We expect other applications
utilizing uniform grids for collision queries to experience this same boost in perfor-

62

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

mance. However, given scenes such as Hairball and San Miguel that are both dense
and complex, improvements in rendering performance are not enough to compensate
for the degradation in build performance. Another limitation of our method is that
large non-axis aligned triangles can still generate significant overhead and consume
large amounts of memory due to its mostly empty AABB. One can circumvent this
issue by decomposing triangles into smaller pieces in a preprocessing step.

It is worth noting that we can further optimize the build process by introducing
some risk. In Algorithm 3 (EXTRACT-GRID), the process spins while waiting for an
allocation to complete by repeatedly reading the associated grid array element. Once
the allocation in progress flag clears, we then acquire the triangle list index via an
atomic decrement operation. Rather than using an atomic read, however, we can in-
stead use an atomic decrement operation so that as soon as the allocation in progress
flag clears, the next access acquires the triangle index position, thereby eliminating
one atomic operation. This modification requires that we initialize the grid element
with a third high bit set, so that the decrement does not clear the allocation in progress
flag. Although we did not experience any issue with this approach, we cannot guaran-
tee that the allocation will complete before the count rolls under and unintentionally
clears the allocation in progress flag. With this modification, build performance is
indeed faster and a bit closer to the original build performance, but because of this
potential race condition, we do not formally report our results.

5. Conclusion

We have presented a new uniform grid build procedure designed to reduce memory
consumption during the build process and in the final grid representation. Further,
we used a ray-tracing application to evaluate our approach, using scenes of varying
complexity, and in all cases we were able to demonstrate a significant improvement
in memory consumption. Under practical conditions, our method uses 28% to 38%
less memory during the build process as compared to the state of the art and similarly,
our method requires 31% to 38% less memory to store the accelerator. For large
grid densities, these savings jump up to approximately 45%. Our evaluation also
shows little to no loss in the combined build and render time performance and in
some cases, the possibility of a small gain in rendering performance. We expect that
the optimizations discussed and demonstrated will also extend to other applications
using uniform grids.

Acknowledgements

In addition to the test scene authors listed in Figure 9, we acknowledge NSF (Award
Number IIS-1064427) for providing partial funding for this research.

63

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

A. Test Scenes

Figure 9 contains information about our twelve test scenes, including the scene name,
a screen capture, the triangle count, and acknowledgments.

Crytek Sponza
261, 978 triangles

(F. Meinl and M. Dabrovic)

Conference Room
282, 655 triangles

(A. Grynberg and G. Ward)

The Bedroom
361, 628 triangles

(D. Vacek and D. Tousek)

The Shop Girls
451, 507 triangles

(G. Luciano, D. Konieczka, &
J. Birn)

Science Fiction
781, 672 triangles

(J. C. Silva)

Matinee
872, 713 triangles

(D. Konieczka)

Christmas
1, 091, 063 triangles

(J. Birn)

Artistry
1, 128, 828 triangles

(J. Luciano)

Natural History
1, 444, 002 triangles

(A. L. Bautista, J. Andersdon)

Hairball
2, 880, 000 triangles

(S. Laine)

Asian Dragon
7, 050, 046 triangles

(XYZ RGB Dragon Inc.)

San Miguel
10, 500, 549 triangles
(G. M. Leal Llaguno)

Figure 9. Test scenes used to validate our memory optimized build process.

64

http://jcgt.org

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

References

AKENINE-MÖLLER, T. 2002. Fast 3D triangle-box overlap testing. Journal of Graph-
ics Tools 6, 1 (Jan.), 29–33. URL: http://dx.doi.org/10.1080/10867651.
2001.10487535. 54

AKINCI, G., AKINCI, N., OSWALD, E., AND TESCHNER, M. 2013. Adaptive sur-
face reconstruction for SPH using 3-level uniform grids. In 21st International Confer-
ence in Central Europe on Computer Graphics, Visualization and Computer Vision in
co-operation with EUROGRAPHICS Association, WSCG 2013, Plzen, Czech Republic,
June 24-27, 2013, Eurographics Association, Aire-la-Ville, Switzerland, 195–204. URL:
http://hdl.handle.net/11025/10610. 51

AMANATIDES, J., AND WOO, A. 1987. A fast voxel traversal algorithm for ray tracing. In
Eurographics, Eurographics Association, Aire-la-Ville, Switzerland, 3–10. URL: http:
//dx.doi.org/10.2312/egtp.19871000. 52

CLEARY, J. G., WYVILL, B. M., VATTI, R., AND BIRTWISTLE, G. M. 1983. De-
sign and analysis of a parallel ray tracing computer. In Graphics Interface ’83, Na-
tional Research Council of Canada, Toronto, ON, Canada, 33–38. URL: http://
graphicsinterface.org/proceedings/gi1983/gi1983-5. 58

ERICSON, C. 2004. Real-time collision detection. CRC Press. URL: https:

//www.crcpress.com/Real-Time-Collision-Detection/Ericson/p/

book/9781558607323. 51

HACHISUKA, T., AND JENSEN, H. W. 2010. Parallel progressive photon mapping on GPUs.
In ACM SIGGRAPH ASIA 2010 Sketches, ACM, New York, SA ’10, 54:1–54:1. URL:
http://doi.acm.org/10.1145/1899950.1900004. 51

KALOJANOV, J., AND SLUSALLEK, P. 2009. A parallel algorithm for construction of uni-
form grids. In Proceedings of the Conference on High Performance Graphics 2009, ACM,
New York, HPG ’09, 23–28. URL: http://doi.acm.org/10.1145/1572769.
1572773. 51

KALOJANOV, J., BILLETER, M., AND SLUSALLEK, P. 2011. Two-level grids for ray tracing
on GPUs. Computer Graphics Forum 30, 2, 307–314. URL: http://dx.doi.org/
10.1111/j.1467-8659.2011.01862.x. 51

KRONE, M., STONE, J., ERTL, T., AND SCHULTEN, K. 2012. Fast visualiza-
tion of gaussian density surfaces for molecular dynamics and particle system tra-
jectories. The Eurographics Association, Aire-la-Ville, Switzerland, M. Meyer and
T. Weinkaufs, Eds. URL: http://dx.doi.org/10.2312/PE/EuroVisShort/
EuroVisShort2012/067-071. 51

LIU, X., AND ROKNE, J. G. 2013. A micro 64-tree structure for accelerating ray tracing
on a GPU. In Proceedings of Graphics Interface 2013, Canadian Information Process-
ing Society, Toronto, ON, Canada, GI ’13, 165–172. URL: http://dl.acm.org/
citation.cfm?id=2532129.2532158. 51

65

http://jcgt.org
http://dx.doi.org/10.1080/10867651.2001.10487535
http://dx.doi.org/10.1080/10867651.2001.10487535
http://hdl.handle.net/11025/10610
http://dx.doi.org/10.2312/egtp.19871000
http://dx.doi.org/10.2312/egtp.19871000
http://graphicsinterface.org/proceedings/gi1983/gi1983-5
http://graphicsinterface.org/proceedings/gi1983/gi1983-5
https://www.crcpress.com/Real-Time-Collision-Detection/Ericson/p/book/9781558607323
https://www.crcpress.com/Real-Time-Collision-Detection/Ericson/p/book/9781558607323
https://www.crcpress.com/Real-Time-Collision-Detection/Ericson/p/book/9781558607323
http://doi.acm.org/10.1145/1899950.1900004
http://doi.acm.org/10.1145/1572769.1572773
http://doi.acm.org/10.1145/1572769.1572773
http://dx.doi.org/10.1111/j.1467-8659.2011.01862.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01862.x
http://dx.doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/067-071
http://dx.doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/067-071
http://dl.acm.org/citation.cfm?id=2532129.2532158
http://dl.acm.org/citation.cfm?id=2532129.2532158

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

MAGALHÃES, S. V. G., ANDRADE, M. V. A., FRANKLIN, W. R., AND LI, W. 2015. Fast
exact parallel map overlay using a two-level uniform grid. In Proceedings of the 4th Inter-
national ACM SIGSPATIAL Workshop on Analytics for Big Geospatial Data, ACM, New
York, BigSpatial’15, 45–54. URL: http://doi.acm.org/10.1145/2835185.
2835188. 51

MILLINGTON, I. 2010. Game physics engine development: how to build a robust
commercial-grade physics engine for your game. CRC Press, Boca Raton, FL. 51

NICKOLLS, J., BUCK, I., GARLAND, M., AND SKADRON, K. 2008. Scalable parallel
programming with CUDA. Queue 6, 2 (Mar.), 40–53. URL: http://doi.acm.org/
10.1145/1365490.1365500. 54

PEDERSEN, S. A. 2013. Progressive photon mapping on GPUs. Master’s thesis, Norwegian
University of Science and Technology, Norway. URL: http://hdl.handle.net/
11250/253364. 51

RAZAVI, M., TALEBI, H., ZAREINEJAD, M., AND DEHGHAN, M. 2015. A GPU-
implemented physics-based haptic simulator of tooth drilling. The International Jour-
nal of Medical Robotics and Computer Assisted Surgery 11, 4, 476–485. URL: https:
//dx.doi.org/10.1002/rcs.1635. 51

REDA, K., KNOLL, A., I. NOMURA, K., PAPKA, M. E., JOHNSON, A. E., AND LEIGH,
J. 2013. Visualizing large-scale atomistic simulations in ultra-resolution immersive envi-
ronments. In Large-Scale Data Analysis and Visualization (LDAV), 2013 IEEE Symposium
on, IEEE, Los Alamitos, CA, 59–65. URL: http://dx.doi.org/10.1109/LDAV.
2013.6675159. 51

SENGUPTA, S., HARRIS, M., ZHANG, Y., AND OWENS, J. D. 2007. Scan primitives
for GPU computing. In Proceedings of the 22Nd ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware, Eurographics Association, Aire-la-Ville, Switzerland,
GH ’07, 97–106. URL: http://dl.acm.org/citation.cfm?id=1280094.
1280110. 52, 53

TARANTA II, E. M., AND PATTANAIK, S. N. 2014. Macro 64-regions for uniform grids
on GPU. The Visual Computer 30, 6-8, 615–624. URL: http://dx.doi.org/10.
1007/s00371-014-0974-x. 51, 67

WALD, I., IZE, T., KENSLER, A., KNOLL, A., AND PARKER, S. G. 2006. Ray tracing
animated scenes using coherent grid traversal. ACM Transactions On Graphics 25, 3 (July),
485–493. URL: http://doi.acm.org/10.1145/1141911.1141913. 58

WELLER, R., FRESE, U., AND ZACHMANN, G. 2013. Parallel collision detection in constant
time. In Workshop on Virtual Reality Interaction and Physical Simulation, The Eurograph-
ics Association, Aire-la-Ville, Switzerland, J. Bender, J. Dequidt, C. Duriez, and G. Zach-
mann, Eds. URL: http://dx.doi.org/10.2312/PE.vriphys.vriphys13.
061-070. 51

ZHENG, J., AN, X., AND HUANG, M. 2012. GPU-based parallel algorithm for particle
contact detection and its application in self-compacting concrete flow simulations. Com-
puters & Structures 112/113, 193–204. URL: http://dx.doi.org/10.1016/j.
compstruc.2012.08.003. 51

66

http://jcgt.org
http://doi.acm.org/10.1145/2835185.2835188
http://doi.acm.org/10.1145/2835185.2835188
http://doi.acm.org/10.1145/1365490.1365500
http://doi.acm.org/10.1145/1365490.1365500
http://hdl.handle.net/11250/253364
http://hdl.handle.net/11250/253364
https://dx.doi.org/10.1002/rcs.1635
https://dx.doi.org/10.1002/rcs.1635
http://dx.doi.org/10.1109/LDAV.2013.6675159
http://dx.doi.org/10.1109/LDAV.2013.6675159
http://dl.acm.org/citation.cfm?id=1280094.1280110
http://dl.acm.org/citation.cfm?id=1280094.1280110
http://dx.doi.org/10.1007/s00371-014-0974-x
http://dx.doi.org/10.1007/s00371-014-0974-x
http://doi.acm.org/10.1145/1141911.1141913
http://dx.doi.org/10.2312/PE.vriphys.vriphys13.061-070
http://dx.doi.org/10.2312/PE.vriphys.vriphys13.061-070
http://dx.doi.org/10.1016/j.compstruc.2012.08.003
http://dx.doi.org/10.1016/j.compstruc.2012.08.003

Journal of Computer Graphics Techniques
A Memory Efficient Uniform Grid Build Process For GPUs

Vol. 5, No. 3, 2016
http://jcgt.org

Index of Supplemental Materials

Included in our supplemental material (http://www.jcgt.org/published/0005/
03/04/source.zip) is a fully commented CUDA implementation of the build process
described in this paper, build mem optimized.cu. Also included is the state-of-the-art variant,
build standard.cu from [Taranta II and Pattanaik 2014] for reference and comparison. The
last item, build helpers.cu, contains some utility functions used by both.

Author Contact Information
Eugene M. Taranta II
Department of Computer Science
University of Central Florida
4000 Central Florida Blvd
Orlando, FL 32816
etaranta@gmail.com

Sumanta N. Pattanaik
Department of Computer Science
University of Central Florida
4000 Central Florida Blvd
Orlando, FL 32816
sumant@cs.ucf.edu
http://graphics.cs.ucf.edu/

Taranta II, Eugene M. and Pattaniak, Sumanta N., A Memory Efficient Uniform Grid Build
Process For GPUs, Journal of Computer Graphics Techniques (JCGT), vol. 5, no. 3, 50–67,
2016
http://jcgt.org/published/0005/03/04/

Received: 2015-06-14
Recommended: 2016-03-28 Corresponding Editor: Wojceich Jarosz
Published: 2016-09-29 Editor-in-Chief: Marc Olano

© 2016 Taranta II, Eugene M. and Pattaniak, Sumanta N. (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

67

http://jcgt.org
http://www.jcgt.org/published/0005/03/04/source.zip
http://www.jcgt.org/published/0005/03/04/source.zip
mailto:etaranta@gmail.com
mailto:sumant@cs.ucf.edu
http://graphics.cs.ucf.edu/
http://jcgt.org/published/0005/03/04/
http://creativecommons.org/licenses/by-nd/3.0/

