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Efficient Rendering of
Linear Brush Strokes

Apoorva Joshi

Figure 1. Compound multi-line strokes rendered with our technique.

Abstract

We introduce a fast approach to rendering brush strokes with variable hardness, diameter, and
flow for raster image-editing applications. Given an N -pixel-long linear brush stroke with
diameter M , our approach reduces the time complexity from O(NM2) to O(NM), while
enabling the stroke to be rendered in a single GPU draw call and while avoiding overdraw.

1. Introduction

In an image editor, when the brush tool is being clicked or dragged, we draw a brush
stroke along the mouse’s drag path. If the image editor is running at interactive frame
rates, you can chain line segments between mouse drag positions to draw arbitrary-
shaped brush strokes. In any given frame, the brush is stamped along the straight
line connecting the last mouse position and the current mouse position. The proposed
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method renders the brush stroke along such a line segment—it cannot deal with curves
at infinite precision.

We propose a hybrid method between stamping and sweeping, as defined in Di-
verdi’s paper [DiVerdi 2013]; we use the analytical approach of sweeping, but for
stamping purposes instead of for physically simulating brush bristles [Xu et al. 2004]
or wet paint [Vandoren et al. 2009].

In most image editors, if a brush is only clicked (not dragged), a single impression
is created on the image being edited. This single impression is referred to here as a
stamp. Image editors often provide multiple parameters to customize the brush tool:

• Diameter: Controls the diameter of each stamp, usually defined in terms of
pixels;

• Hardness: Controls how the stamp alpha falls off with distance from the center;

• Opacity: Determines the maximum alpha of the brush stroke;

• Flow: Controls how much each stamp adds to the stroke. Multiple intersecting
stamps sum up their contributions, with the maximum alpha clamped to opacity.

Figure 2. A brush stroke in GIMP. Note how the sides are stamped by fewer circles and,
hence, have less intensity.

In the case of tablet-based pressure-sensitivity, the start- and the end-points may
have different values for these parameters. The editor interpolates these values as
it draws stamps along the line. To sum up, a brush stroke is a series of parametric
stamps along a straight line, additively blended together (see Figure 2).

We need to model a stroke as a continuous process, instead of something like a
distance function, because not doing so leads to visible boundary artifacts between
adjacent stroke segments which share beginning/end points. We also lose the subtler
falloff effects at the ends of the line segment. This is why we cannot use a distance-
based prefiltering technique [Chan and Durand 2005].
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2. Related Work

Based on our tests, Photoshop (CS5) and GIMP (2.8) create brush strokes by addi-
tively stamping along the line. That means they follow the Bresenham-esque pixel
line joining the stroke start point and the end point, stamping the stamp centrally at
each point along it.

3. Our Approach

In a brush stroke, the alpha value at any pixel is proportional to the number of circles
that pass through it. Although existing image editors are treating this as a discrete
problem, it can be modeled as a continuous one and then integrated numerically for
faster results with fewer artifacts.

We treat a stroke as the result of continuously sliding a circle along the stroke
axis, integrating the stamp function at each point along the way. If we compute this
integral for each point in the stroke in parallel in a shader, we can render the stroke in
a single pass and with a single quad.

We render a brush stroke, given a quad (see Figure 3) along with the uniforms N ,
Rmax, Rmin, opacity, H1, H2, F1 and F2 as defined in Section 3.1. The derivations
for the below formulae can be found in the appendices.

E(U,V)

N

Rmin
Rmax

Figure 3. The quad
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3.1. Constants

These are the symbolic constants we use:
U, V UV coordinates of current pixel
N Length of the stroke in pixels
Rmax, Rmin Max, min radii in pixels at the ends of the stroke
opacity Opacity of the stroke
H1, H2 Hardness at the ends of the stroke
F1, F2 Flows at the ends of the stroke

3.2. Formulae

aspect =
N

2Rmax
+ 1 (Appendix A)

X = U × aspect

Y = V

ψ(x) =
Rmax(2x− 1)

N
(Appendix E)

flow(x) = lerp(F1, F2, ψ(x))

hardness(x) = lerp(H1, H2, ψ(x))

radius(x) = lerp
(

0.5,
Rmin

2Rmax
, ψ(x)

)
(Appendix D)

dist(x,X, Y ) =
√

(X − x)2 + (Y − 0.5)2

φ(x,X, Y ) =
dist(x,X, Y )

radius(x)

You can use your own falloff function. Here’s ours:

falloff(x,X, Y ) =


1 if φ(x,X, Y ) < hardness(x),

cos

(
πφ(x,X,Y )

2(1−hardness(x)) + phase(x)

)2

, otherwise;

phase(x) =
π

2

(
1− 1

1− hardness(x)

)
.
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Formulae for finding limits:

BE = |Y − 0.5| (Appendix C)

BD = radius(X)

BO =
N ×BD

Rmax −Rmin

λ = DB2 − DB2.BE2

BO2

ε =
4DB4

BO2

r21 =

0.25 if Rmin = Rmax

(2λ+ε)+
√

(−2λ−ε)2−4(λ2+εBE2)

2 if Rmin 6= Rmax

r22 =

0.25 if Rmin = Rmax

(2λ+ε)−
√

(−2λ−ε)2−4(λ2+εBE2)

2 if Rmin 6= Rmax

X1 = clamp(X −
√
r21 −BE2, 0.5, aspect− 0.5)

X2 = clamp(X +
√
r22 −BE2, 0.5, aspect− 0.5)

Finally, the alpha for the point (X,Y ) is given by

α(X,Y ) = min

(
opacity, 2Rmax

∫ X2

X1

flow(x)falloff(x,X, Y )dx

)
.

We compute the integral numerically using the trapezoidal rule.

4. Blending

While the brush is being dragged and before it is released, we accumulate the stroke
into a separate overlay texture. When the mouse is released, this overlay is blended
with the image below in a process called merging. Merging follows the standard
compositing rules [Porter and Duff 1984], but accumulating the overlay does not.
Let’s see why:

When we’re blending subsequent strokes together, the starting point of the second
stroke overlaps with the end point of the first one. Let’s say for a given pixel, the first
stroke contributes 0.5 intensity (alpha) to that pixel, and the second stroke contributes
another 0.5 intensity. Because of the additive nature of the process, the pixel should
now have an alpha of 1.0.

However, in a traditional alpha-compositing setup, we use glBlendEquation(

GL_FUNC_ADD) and glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA). Thus, given

5

http://jcgt.org


Journal of Computer Graphics Techniques
Efficient Rendering of Linear Brush Strokes

Vol. 7, No. 1, 2018
http://jcgt.org

source alpha As and destination alpha Ad, final resultant alpha Af is given by Af =

As + Ad(1 − As). Substituting As = Ad = 0.5, we get Af = 0.75 instead of the
desired value of 1.0.

This is why we have to switch to additive blending, but only on the alpha channel.
We do this by changing the blending function to glBlendFuncSeparate(GL_ONE,

GL_ZERO, GL_ONE, GL_ONE), which means that alpha is additive and RGB is picked
from the source (foreground). Thus Af = As +Ad, which is what we want.

5. Results

Figure 4 contains single-line stroke comparisons between the discrete approach and
our approach.

Figures 5–8 contain comparisons of compound strokes—made up of multiple line
strokes—rendered with the discrete approach and with our approach.

Note that as intended, the strokes largely look the same. However, our approach
tends to be smoother because we model stamps as a continuous function and hence
avoid pixel artifacts present in the discrete approach.

(a) Constant stroke (b) Variable diameter

(c) Variable flow (d) Variable hardness

Figure 4. Single-line strokes—discrete method (top) vs our method (bottom).
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Figure 5. Constant stroke—discrete method (left) vs our method (right).

Figure 6. Variable diameter—discrete method (left) vs our method (right).

Figure 7. Variable flow—discrete method (left) vs our method (right).
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Figure 8. Variable hardness—discrete method (left) vs our method (right).

Our approach can lead to slightly more intense strokes than the discrete approach.
This is because in diagonal strokes, the discrete approach spaces out stamps a little
bit more along pixel diagonals, as compared to horizontal or vertical strokes. Our
approach does not cause lighter diagonal strokes, since the stamp motion is modeled
as a continuous slide and not as discrete stamps along a Bresenham-esque pixel line.
Even though our approach is arguably more accurate in this regard, the difference is
inconsequential for all practical purposes.

6. Limitations

Our technique fundamentally models stamps as a continuous process. In order for
this to work, the stamps must be defined as a continuous isotropic function. However,
many painting-focused image editors provide the option to use textures as stamps.

Our approach does not handle this use-case. A naive approach would be to ap-
proximate this using the following technique: During initialization or brush-loading,
we create an accumulated texture of twice the stamp-texture width, and of the same
height. In this texture, we compute a sliding sum of the alpha values along the stamp
texture’s horizontal axis. We can now UV-map this accumulated texture on an arbi-
trary brush stroke consisting of three quads connected end-to-end to form a rectangle,
where we stretch the texture along the middle quad (see Figure 9).

This naive implementation, however, has several flaws. Tapered strokes will not
work, since we only accumulate along the horizontal axis. If the stroke is not horizon-
tal, this approach rotates the stamp itself, and since the stamp is not isotropic, strokes
will not join up seamlessly end-to-end. Additionally, if the length of the stroke is
less than the length of the accumulated texture, we will get incorrect results. This is
why our technique cannot be used to render textured brushes. On the other hand, the
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Figure 9. Left: Stamp texture; Right: Accumulated texture.

application can degrade gracefully to rendering multiple quads using the traditional
technique of multiple overlapping quads. Another limitation of our approach is that it
does not support Bézier curves and it is limited to straight lines.

7. Conclusion

Our implementation thus uses a single quad to render a brush stroke; this allows
us to get rid of overdraw, avoid artifacts, and achieve a high degree of parametric
stamp control using opacity, flow, hardness and diameter. Our implementation is
parallelizable and GPU-friendly.

We allow for varying parameters along the line. Our approach supports a tradeoff
between performance and stroke flexibility. Supporting only constant-width strokes
will allow us to skip solving for the two radii. Supporting only hard strokes will allow
us to skip numerical integration.

Our approach is useful for traditional raster image-editors, where we can support
both the pencil tool and the brush tool for non-textured brushes.

Since we can store a stroke as two points and a set of parameters, we can rasterize
the strokes at arbitrary resolutions. If we use straight lines to approximate Bézier
curves, we can use this technique to enable soft brushes in vector-based illustration
applications.
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Appendix A - Coordinate-space Normalization

We do this whole calculation in a pixel shader over a single quad, whose UV coordinates
range from [0, 0] to [1, 1]. The height of the quad is 2Rmax pixels, and the width of the stroke
is 2Rmax +N pixels as seen in Figure 3.
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To keep our calculation coordinate space spatially uniform, we multiply the UV at the
pixel by the aspect ratio of the quad. Thus, after normalization, the X-axis ranges from
[0, aspect], where aspect = N

2Rmax
+ 1 and the Y-axis ranges from [0, 1].

Thus, after normalization, the length of the side of one pixel in normalized coordinates is

pix len =
1

2Rmax.

Appendix B - Constant Stroke

Before we attempt to fully generalize the problem, we derive the equation for a stroke with
constant diameter, hardness, and flow.

A1

E

A2B

Figure 10. Constant stroke.

Take a stroke of constant radius R and flow F . We will fully generalize to variable-
diameter strokes later. We want to derive the alpha value at every point E.

As the circular brush stamp slides continuously from left to right, the alpha at point E
will be proportional to the number of stamps that pass through it. The circle with center A1 is
the first circle that overlaps point E, and the the circle with center A2 is the last. This means
that E was inside a stamp for the length of A1A2.

We can find out locations of the points A1 and A2 easily using the Pythagorean theorem,
since we know BE, and since A1E = A2E = R for any point E.

In the traditional discrete stamp model, each stamp contributes flow F amount of alpha
to a pixel. In our continuous model, we can say that after sliding the circle over the width of
a pixel, the resultant alpha is F .

Therefore, the instantaneous alpha any one circle contributes is

F

pix len
= F × 2R.

Putting the above equations together, the alpha at any point E(X,Y ) is equal to

α(X,Y ) = min

(
opacity,

∫ X2

X1

F × 2R.dx

)
,

where X1 and X2 are the normalized X-coordinates of A1 and A2.
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Figure 11. Unclamped constant stroke.

We haven’t clamped X1 and X2 yet, so our calculations result in the stroke in Figure 11.
If we clamp X1 and X2 to the range [0.5, aspect−0.5], we get the result we want, as seen

in Figure 12.

Figure 12. Top: Discrete method (150 quads); Bottom: Our method (Single quad, no over-
draw), hardness=1.0, flow=0.02, opacity=1.0.

.

Appendix C - Variable-diameter Stroke

When brushing with a pressure-sensitive device, pressure can influence brush diameter—the
harder you press, the larger the brush size. To support this, we want strokes with linearly
interpolated diameters. Just as before, we need to find A1 and A2 when given any point E
(see Figure 13).

This calculation isn’t as simple as the previous case, because the radii of the two circles
are also unknown and need to be determined. A1 and A2 are the centers of the first and the
last circles that contain the point E. Therefore, we need to find two circles that are tangential
to the taper line and pass through point E.
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A1

E

A2B

D

O

C1

C2

Figure 13. Variable-diameter stroke.

Let’s first locate A1:

∆DBO ∼ ∆ACO,

∴
DB

BO
=
AC

CO
,

∴
DB

BO
=

r√
AO2 − r2

.

Now,

AO = BO +AB (1)

= BO +
√
r2 −BE2.

Substituting AO,

DB

BO
=

r√
(BO +

√
r2 −BE2)2 − r2

.

After simplifying the equation and introducing a couple of intermediate variables for
brevity, we are left with

r4 + (−2λ− ε)r2 + (λ2 + εBE2) = 0, (2)

where

λ = DB2 − DB2.BE2

BO2
,

ε =
4DB4

BO2
.

This is solvable as a quadratic equation of r2 because all three constants—DB, BE and
BO—are easily evaluated for any point E. The full formulation is provided in Section 3.

For point A2, we can go back and replace Equation (1) with AO = BO−AB. After the
full simplification process, we end up with Equation (2) again.
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Figure 14. Top: Discrete method (150 quads); Bottom: Our method (Single quad, no over-
draw), hardness=1.0, flow=0.02, opacity=1.0, tapering to zero.

If you solve the quadratic above, the two obtained values of r2 give us the radii of the two
circles we want. Take a square root, and we’re done:

r21 =
(2λ+ ε) +

√
(−2λ− ε)2 − 4(λ2 + εBE2)

2

r22 =
(2λ+ ε)−

√
(−2λ− ε)2 − 4(λ2 + εBE2)

2

Once we get the two radii, we can get A1 and A2 using the Pythagorean theorem. See
Figure 14 for a comparison.

Appendix D - Falloff

Until now, we were only talking about stamps with a distant-invariant function, but brush tools
also offer a distance-based falloff using a parameter called hardness.

To compute falloff for any given stamp, we first compute φ(x,X, Y ), the normalized
distance from the center. Here, X,Y are the coordinates of the given point E, and (x, 0.5)

represents the coordinates of the sliding center; φ is 0 at the center, and it is 1 at the circum-
ference of the stamp:

φ(x,X, Y ) =
dist(x,X, Y )

radius(x)
.

The distance function gives the Euclidean distance from any point E(X,Y ) to any circle
center (x, 0.5):

dist(x,X,Y) =
√

(X− x)2 + (Y − 0.5)2.

The radius function gives the radius of any circle centered at (x, 0.5):

radius(x) = lerp

(
0.5,

Rmin

2Rmax
, ψ(x)

)
.
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Figure 15. Stamps for brushes with 0, 0.25, 0.50, and 1.0 hardness.

Rmin, Rmax are the minimum and the maximum radii of the stroke in pixels, and N is the
length of the stroke. The term ψ(x) represents the interpolation factor. It is 0 at the center of
the left-most circle of the stroke and 1 at the center of the right-most circle of the stroke:

ψ(x) =
2Rmax(x− 0.5)

N
.

Now that we have obtained a normalized distance φ in the range [0, 1] (for affected points),
we can calculate the falloff. In this implementation, we use a squared-cosine falloff, but any
continuous function can be used instead.

Thus, given a hardness in the range [0, 1],

falloff(x,X, Y ) =


1 if φ(x,X, Y ) < hardness

cos

(
πφ(x,X,Y )
2(1−hardness) + phase

)2

, otherwise;

phase =
π

2

(
1− 1

1− hardness

)
.

To find the alpha at any point, we need to integrate over all of the falloff values of the
circle-centers that touch that point:

α(X,Y ) = min

(
opacity, F × 2Rmax

∫ X2

X1

falloff(x,X, Y ).dx

)
.

We could not find a function that acted as a falloff function that we could also analytically
integrate over. Thus, we’ll be using numerical integration methods such as Simpson’s rule or
the trapezoidal rule. There is potential for optimization here, if we can find a better way to
numerically integrate, requiring fewer samples, or a falloff function that is more amenable to
integration.
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Appendix E - Interpolating Parameters

When dealing with variable parameters, we have to linearly interpolate between them. The
parameters Rmax, H1, and F1 are associated with the left-most circle of our brush stroke,
which is centered at the normalized coordinates (0.5, 0.5). The parameters Rmin, H2, and
F2 are associated with the right-most circle of our brush stroke, which is centered at the
normalized coordinates (Rmax+N

2Rmax
, 0.5).

We want a function ψ(x) that ranges linearly between [0,1] between the two end-points
of our stroke, given a normalized coordinate x. We use this function to generate our linear
interpolation coefficient for any given pixel:

ψ(x) =
Rmax(2x− 1)

N
.

We can use this function to compute a parameter for a circle centered at x. For instance,
hardness for a circle with center (x, 0.5) is

hardness(x) = lerp(H1, H2, ψ(x)).

Because flow, radius and hardness are interpolated within limits X1 and X2, this guaran-
tees that ψ will be in the range [0, 1].
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