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Figure 1. A comparison of three normal-estimation methods. The left image is the result of

basic normal estimation, the middle image is the result of PCA, and the right image is the

output of our method by blending the basic and PCA results. The basic normal estimation

leads to an almost-correct result except for nonsmooth artifacts. The PCA result will fail

when there are inadequate neighbor particles.

Abstract

Particle-based methods like smoothed particle hydrodynamics (SPH) are increasingly adopted

for large-scale fluid simulation in interactive computer graphics. However, surface rendering

for such dynamic particle sets is challenging: current methods either produce low-quality

results, or they are time consuming. In this paper, we introduce a novel approach to render

high-quality fluid surfaces in screen space. Our method combines the techniques of particle

splatting, ray-casting, and surface-normal estimation. We apply particle splatting to accelerate

the ray-casting process, estimating the surface normal using principal component analysis

(PCA) and a GPU-based technique to further accelerate our method. Our method can produce

high-quality smooth surfaces while preserving thin and sharp details of large-scale fluids. The

computation and memory cost of our rendering step depends only on the image resolution.

These advantages make our method very suitable for previewing or rendering hundreds of

millions of particles interactively. We demonstrate the efficiency and effectiveness of our

method by rendering various fluid scenarios with different-sized particle sets.
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1. Introduction

Particle-based methods like smoothed particle hydrodynamics (SPH) [Desbrun and

Gascuel 1996] for fluid simulation have received copious attention in the graphics

community due to their flexibility and simplicity. Although particle-based fluid sim-

ulation has improved greatly, high-quality real-time surface rendering for large-scale

fluids is still a very challenging problem for existing particle-rendering methods, sig-

nificantly limiting those methods from being used in interactive applications.

Generally, in realistic liquid rendering, particle-based liquid surfaces can be rep-

resented by a level set based on an implicit function, extracted as polygonal meshes

using marching cubes [Lorensen and Cline 1987] or marching tiles [Williams 2008].

Articles like [Müller et al. 2003; Zhu and Bridson 2005; Adams et al. 2007; Sin

et al. 2009; Bhatacharya et al. 2011; Yu and Turk 2013] focus on the construction

of implicit functions to generate smooth isosurfaces without blobby artifacts. How-

ever, due to the full-domain calculation and limited grid resolution, implicit surface

polygonization methods are both time consuming and memory intensive, especially

in large-scale scenes. Furthermore, they suffer from temporal discretization artifacts

[Adams et al. 2006] due to the limited grid resolution.

Another class of rendering techniques which are often used for interactive appli-

cations, such as those described in [Adams et al. 2006; Müller et al. 2007; van der

Laan et al. 2009; Imai et al. 2014; Imai et al. 2016], are based on particle splatting.

These screen-space-based methods can render the particle sets in real time with less

memory consumption and do not need any information about neighboring particles.

However, these methods cannot deal with situations with noise and rarely deal with

hundreds of millions of particles. Moreover, they always produce serrated edges with

sphere shapes on liquid-free surfaces and significant blobby artifacts when the camera

is near the fluid surface.

In this paper, we propose a novel rendering approach for particle-based fluids that

can produce high-quality surface visualization in real time for large-scale scenes (see

Figure 2). The key idea of our method is to merely reconstruct the surface which

is visible using a ray-casting algorithm. Our method casts rays towards the liquid

and then samples those rays. At the same time, we calculate the density-attribute

values of those sampling points’ neighbor particles step-by-step until they reach the

defined iso-value. The entry points of those rays are determined by performing a

particle-splatting step to generate an approximated surface. Thus, our method omits

the empty space which does not contain any particles and enables the ray casting

to work in a narrow band around the isosurface. To construct a smooth and detail-

preserving surface, we calculate the normal directions by performing principal com-

ponent analysis (PCA) among the neighbor particles around the isosurface instead of

using the extracted isosurface directly. We design a GPU-based algorithm to speed

up its efficiency significantly. Compared to previous related rendering methods, our
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Figure 2. An overview of our surface-rendering algorithm. First step: input the position data;

second step: set the initial state; third step: determine the ray-casting entry point by splatting

particles; fourth step: ray casting to find the isosurface; fifth step: estimating the surface

normal; finally, obtaining the rendering result.

approach produces high-quality rendering results and significantly saves computation

and memory cost, especially for large-scale particle sets. Moreover, our method pro-

vides users a trade-off between speed and quality by adjusting the resolution of the

view-port. Our method is straightforward and can be integrated with existing particle-

based simulation schemes easily.

2. Related Work

In computer graphics, particle-based methods are increasingly used for simulating

high-resolution fluids. While previous work like [Müller et al. 2003; Adams et al.

2007; Solenthaler and Pajarola 2009; Macklin and Müller 2013] have improved the

simulation efficiency [Ihmsen et al. 2014], less work has focused on the high-quality

surface rendering of large particle sets.

Traditionally, particle-based simulation of liquids were rendered by isosurface

methods [Lorensen and Cline 1987]. In 1982, Blinn et al. introduced the earliest

metaball approach [Blinn 1982], where the scalar field was constructed by sum-

ming up the values of radial basis functions. Müller et al. improved this technique

by smoothing the surface [Müller et al. 2003]. Wald et al. [Wald and Seidel 2005]

proposed a ray-tracing method to deal with the point-based models. Szecsi and Illes

proposed a fast GPU-based metaball rendering approach [Szécsi and Illés 2012]; they

used A-buffer techniques and fragmented linked lists. However, those methods al-

ways produce bumps and fail to yield flat surfaces even for a uniformly distributed
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particle set. In 2007, Adams et al. [Adams et al. 2007] used a distance-based surface-

tracking technique to generate smooth surfaces even for particles with different radii,

and, later, Yu and Turk [Yu and Turk 2013] proposed an anisotropic kernel approach

to further modify the extracted surfaces. Their method can produce impressive liquid

surfaces but the time consumption is considerable.

Ray casting is widely used for volume rendering [Kruger and Westermann 2003].

It is, however, computationally expensive when applied directly over the whole par-

ticle set. A modification of this technique is to first resample particle quantities into

a temporary uniform 3D grid in a simulation domain [Navratil et al. 2007] and then

use traditional volume ray-casting algorithms [Drebin et al. 1988; Kruger and West-

ermann 2003] on the 3D grid to extract an isosurface. Fraedrich et al. [Fraedrich et al.

2010] adopted a perspective grid in view space and reduced the memory requirements

compared to the uniform grid. In [Kanamori et al. 2008; Zhang et al. 2008], intersec-

tions of view-ray and particles were computed to generate the isosurface directly and

thus avoided the memory consumption of a temporary grid. Ilya et al. [Rosenberg

and Birdwell 2008] proposed a fast isosurface extraction technique by dividing the

simulation domain into blocks and extracted isosurfaces within those blocks, which

can achieve real-time performance with thousands of particles.

Surface splatting is a widely used technique for surface reconstruction [Zwicker

et al. 2001]. In order to obtain a smooth surface representation based on surface splat-

ting, Adams et al. [Adams et al. 2006] first determined depth values of the foremost

particles and then blended the normals for overlapping particles. Later, Müller et al.

constructed meshes in screen space which can accelerate the surface-splatting step

[Müller et al. 2007]. In [Müller et al. 2007; van der Laan et al. 2009], the authors

smoothed the depth buffer and calculated normals by neighbor pixel depth. In [Reichl

et al. 2014], the rendering quality of existing surface-splatting methods cannot match

the implicit surface polygonization methods although they can run in real time. Imai

and colleagues also presented a real-time rendering method that can handle multiple

refractions [Imai et al. 2014], but the method causes inaccurate refractions and suf-

fers from the same problems as in the previous filtering-based approaches [Cords and

Staadt 2009; Green 2010], that is, the resultant depth maps unnaturally warp towards

the viewpoint around depth boundaries. Recently, Imai et al. presented a new screen-

space method [Imai et al. 2016] to handle blobby artifacts in real time; their goal was

very similar to ours, but our method can handle large-scale particle-based fluids with

high quality in real time. See Figure 1 for a comparison of some of the methods.

Normal estimation from a particle set is a well-studied problem in the area of

point-cloud processing. The most commonly used method is based on regression

[Hoppe et al. 1992; Guennebaud and Gross 2007; Huang et al. 2009]. These tech-

niques estimate normals with a tangent plane generated by performing PCA over

neighbor particles. Due to the inherent low-pass filter property of regression mod-
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Input: Particle position set Px,y,z

if pxi,yj ,kk
∈ Px,y,z

Distribute pxi,yj ,kk
to GPU node G(p);

for each GPU node

Rendering spheres Spxi,yj,kk
⇐ Splatting method + Point sprites;

Depth buffers Dbuf{Px,y,z} ⇐ Hardware depth test;

end for

end if

Casting-rays from camera with each ray-casting entry point R(p);

Distribute R(p) to GPU node G(p);

for each GPU node

Sample xi from Rp ∩Dbuf{Px,y,z};

si ⇐ Density attribute value; // (Eq. 1)

isosurface ⇐ Ray-casting method;

while xi ∈ isosurface

N ′

i ⇐ Basic estimation normal; // (Eq. 2)

Ci ⇐ Covariance matrix; // (Eq. 3)

N ′′

i ⇐ Smallest eigenvector and eigenvalue of Ci;

Ni ⇐ Blend N ′

i and N ′′

i ; // (Eq. 5)

end while

end for

Output: Fluid Surface and surface normal

Listing 1. Pseudocode of our method.

els, these methods are robust. The normal-estimation step in our method is similar

to the methods in the point-cloud process, but, in our algorithm, the particle set is

just a solid representation of the fluid volume. We combine PCA with standard SPH

gradient estimation to calculate normals and generate a smooth and detail-preserving

representation.

3. Algorithm

In this work, we take the particles’ position as input. Figure 2 gives an overview of

our algorithm. We first render all particles as spheres to generate depth buffers near

the camera after setting the initial state. For each pixel, we cast a view ray from

the generated depth buffer and sample the fluid-density attribute of neighbor particles

step-by-step until the defined iso-value. is reached. Finally, we evaluate the normal

direction at the isosurface for each pixel based on the neighbor particles’ distribution

(see Listing 1).
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3.1. Surface-Depth Estimation

In this step, we use a ray-casting technique on the GPU and create one thread for

each view ray. The key to parallel computation on the GPU is the load balance, and

the balance of computation for all the view rays is essential for the performance. In

our method, we sample the neighbor particles from the entry point step-by-step until

attaining the isosurface on each view ray. Therefore, we need to reduce the sampling

times and make the entry point close to the isosurface. In our method, we address this

problem by employing a technique similar to splatting methods [Adams et al. 2006;

Müller et al. 2007; van der Laan et al. 2009], rendering all the particles as spheres in

the view-port and generating depth buffers by usinig a hardware depth test. We use

point sprites (screen-oriented quads) with depth replacement in the fragment shader

to rasterize the spheres [van der Laan et al. 2009].

Note that unlike particle-splatting rendering methods, we do not use the depth

buffer as the final surface. We take it as the entry point for each view ray to reduce

unnecessary computation in empty space. As a result, our method doesn’t have prob-

lems like the traditional particle-splatting method[Adams et al. 2006], because we

only use the depth buffer as an entry point and extract the surfaces by the following

two steps.

3.2. Isosurface Extraction

In our method, the isosurface is constructed based on ray-casting techniques, and the

scalar field is constructed using the standard SPH density estimation [Desbrun and

Gascuel 1996] which is similar to the classical metaball method [Blinn 1982]. Our

method can skip empty space quickly and only use ray casting in a narrow band near

the isosurface. For each sampling point xi along the view ray, the density attribute

value si is

si =
∑

j

mjW (xi − pj , r), (1)

where mj is the mass of particle j (it is a unit value in our experiments and we

will omit it in subsequent equations), W is the smoothing kernel function, pj is the

position associated with neighbor particle j, and r is the smoothing radius specifically

used in the rendering step. We set r equal to the smoothing radius h.

Unlike traditional isosurface extraction methods, we do not use the generated iso-

surface as the final surface representation in this step. Instead, we will further evaluate

the normal direction for each view ray based on a more sophisticated scheme and use

this normal vector for rendering. The advantage is that we can avoid bumpy shape and

non-smooth surface (see Figure 3) and generate a high-quality surface representation

at the minimum computation cost. Specifically, this ray-casting isosurface generation

step has the effects of smoothing based on density and can filter the noise caused by

the fluid simulation step.
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Figure 3. The left image is the output of the isosurface extraction step, and the right image is

the smoother surface after the normal estimation step.

3.3. Surface Normal

Based on the isosurface, our approach will estimate a normal direction for each pixel

point as the final surface representation. Because this step will be performed only

once for each view ray on the GPU, we use a sophisticated estimation scheme with a

relatively expensive computation without influencing much of the overall speed.

We compute the normal Ni
′ of the sample point xi at the positions p1, · · · , pn.

We first propose a basic estimation algorithm:

Ni
′ =

∑

j

▽W (xi − pj , R). (2)

The smoothing radius R is set to 3 in our experiments. This normal estimation follows

the standard gradient calculation in [Monaghan 1992], using the spiky kernel from

[Müller et al. 2003]. The basic normal estimation will give an approximate result

which still suffers from the blobby effects for flat surfaces and smoothing effects for

sharp corners (see Figure 1 left).

Inspired by the normal estimation techniques [Hoppe et al. 1992; Guennebaud

and Gross 2007; Huang et al. 2009] for point-cloud processing and the anisotropy

kernel surface-reconstruction method proposed by Yu and Turk [Yu and Turk 2013],

we perform a PCA method at the query point xi to decide the normal direction by

the eigenvector with the least eigenvalue. The covariance matrix Ci is formulated as

follows:

Ci =

∑
j W (xi − pj , R)(pj − x̄i)(pj − x̄i)

T

∑
j W (xi − pj , R)

; (3)
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x̄i =

∑
j pjW (xi − pj , R)

∑
j W (xi − pj , R)

, (4)

where x̄i represents the average position of neighbor particles around a query point

xi. The smoothing kernel we used in our experiments is

W (xi − pj , R) = 1− (‖xi − pj‖ /R)3.

We then used a Jacobi iteration method to evaluate three pairs of eigenvectors associ-

ated with eigenvalues. The eigenvector with the smallest eigenvalue will be used as

the normal direction. The sign of this output vector is not determined, and we choose

the direction which is the most consistent with the basic normal estimation Ni
′. We

define this result as N ′′

i .

Due to the inherent low-pass feature of PCA, the estimated normal is robust to

noise and smoother than the basic normal estimation. Furthermore, fluid details like

sharp corners can be preserved well. However, the method will give a poor result

when there are not enough neighbor particles around the query point xi or if Ci is a

singular matrix (see Figure 1 middle). In these cases, we must use the basic normal

estimation N ′

i . In order to produce a smooth transition, we blend the N ′

i and N ′′

i in a

unified form:

Ni = (1− w)N ′

i + wN ′′

i , (5)

w = min(1, ed(N
′

i ·N
′′

i −k)), (6)

where d and k are the shape control parameters for the blending function. The default

value of d is 10 and k is 0.998 in our experiments. Additionally, we set the blending

parameter w equal to 0.5 in our experiments. Note that both N ′

i and N ′′

i are normal-

ized. When the PCA result N ′′

i is very close to the basic result N ′

i , the final output Ni

is roughly equal to N ′′

i when w is close to 1. On the contrary, when Ni is far from N ′

i ,

the Ni will be dominated by N ′

i as w will decrease dramatically. Finally, we perform

a bilateral Gaussian filtering [Aurich and Weule 1995] on the generated normal map

to get a smoother result while preserving the sharp feaures (see Figure 1 right).

3.4. Rendering

In the final step, we can render the surfaces into transparent surfaces using different

materials. The generated normal map is just the layer which is nearest to the camera

of the particle set. In order to produce an illusion of volume, we need to estimate the

thickness of the fluid. We follow the method described in [van der Laan et al. 2009]

to estimate the fluid thickness. Specifically, all the particles are rendered as spheres in

world space just as in Section 3.1 but the difference is that the spheres have an alpha

transparency. By enabling the alpha blending, the output of this rendering pass is an

estimation of the fluid thickness. The computation and memory cost of this step only

depend on the resolution of the image space.
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4. Results

We have implemented our rendering algorithm entirely on the GPU using CUDA

8.0 and the Opengl Shader language. Our fluid dynamic results are mainly simu-

lated by PBF [Macklin and Müller 2013] with a fixed time-step of 0.02s. Regarding

neighbor-finding, both in simulation and surface construction, we use the GPU hash

grid method described in [Owens et al. 2008]. Additionally, we follow the method

of [Akinci et al. 2013] to handle the fluid-solid coupling. All of our simulation and

rendering algorithms are run on a desktop PC with a NVIDIA GTX 970 graphics card

and a 4.0GHz Intel(R) Core(TM)i7 CPU. We obtained rendering results with different

resolutions. Figures displayed in this paper are 1024× 1024.

Figure 4. Breaking two fluid cubes and rendering the fluid surface in real time. The total

particle number is 100k and the surface rendering takes on average 12ms.
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4.1. Experiments

As in previous work [Yu and Turk 2013], we simulated the same double dam-break

scenario. We can see that in the top-left of Figure 4, the surfaces of the two cubes are

smooth and preserve sharp features, such as cube corners. The top-right and bottom-

left subfigures display the surfaces with splash and thin fluid-sheets details. In the

bottom-right, the rendered fluid surface looks smooth and soft. The rendering time

was just 12ms per frame for 100k particles, while the anisotropic kernel method would

need 1.6s for 24k particles. In Figure 5, we also show the surface rendering results

of the single dam-breaking scene. In this case, the particle number is 600k, and the

simulation and rendering frame rate is 10fps. Our surface-rendering step only takes

16% of the total time.

We also compared our method with the screen space fluid-rendering method [van der

Laan et al. 2009] and the anisotropy kernel screen space fluid rendering method which

was used in [Macklin and Müller 2013; Macklin et al. 2014] in the case of opaque

rendering. In Figure 6, our method produced smoother surfaces than the mentioned

real-time rendering methods.

Figure 5. Surface rendering of single dam-break simulation with 600k particles and resolution

1024×1024.

Figure 6. A comparison between the screen space fluid-rendering method (left), the

anisotropy screen space fluid-rendering method (middle), and our method (right).
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Figure 7. A scenario includes four water spouts in different directions, fluids with different

color splash from the spouts and blend together in a pool finally.

Figure 7 shows a scene that includes four water spouts in different directions.

Water with different colors splash from the spouts and blend together in a pool. We

marked those fluid particles with target colors and calculated the color’s weighted

mean when processing the surface estimate. In this way, we can track the surface

color and render it.

For large-scale scenes, we performed two series of experiments with different

particle numbers and different resolutions. We first used Realflow 1 to create fluid

particles and then imported those sets into our project to produce rendering results.

Table 1 lists the details of our experiments. The particle counts were automatically

created by Realflow after setting the basic sizes.

1http://www.realflow.com/
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Scene

❛
❛
❛
❛
❛
❛
❛

❛
❛

Time

Particle count
4738624 10532800 15201480

Waterfall (Figure 12)
Frame Time 0.0721s 0.1403s 0.1719s

Total Time 28.8454s 56.1205s 68.3608s

Table 1. Frame rendering time and total rendering time of the waterfall scenes with different

particle numbers in resolution 1024×1024. Total frame: 400.

Figure 8. Transparent rendering results of water-splash scenario with 800k particles.

Figure 9. Fluid control-model rendering with150k particles.
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In Figure 8, we show the transparent rendering results of a water-splash scenario.

In this scene, a drop of liquid splashes into a larger body of water and sends up pearly

spray. We can reflect and refract the surrounding environment and capture the isolated

water droplets and make the fluid volume-like instead of just a visible surface.

In Figure 9, we rendered the fluid-control model [Zhang et al. 2015]. From this

scene, we can conclude that our method can be integrated with existing particle-based

simulation schemes easily and has the ability to render complex fluid models.

In Figures 10 and Figure 11, we show the water crown-scenes that contain mil-

lions of particles. In Figure 10, our method can produce different rendering results

according to different rendering materials. In Figure 11, the particle number has

reached 38 million while the rendering time is 0.2966s per frame. We also executed

Figure 10. Transparent rendering results of water-crown scene with different materials and

two million particles
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Figure 11. Rendering results of two different large-scale water-crown scenes. Left: column

12.4 million particles; Right column: 37.9 million particles.

a water-crown scene that contains more than 140 million particles which can also be

run in a level of interaction (due to the limitation of our machine’s storage capacity,

we just performed 65 frames by Realflow in this scene).

In order to further illustrating the rendering details of our method, we imple-

mented a waterfall scene and show the rendering results of the 133rd frame and the

310th frame in Figure 12. In this scene, we applied different background and illumi-

nation effects from previous results. Furthermore, users can design different scenes

and adopt different rendering details, e.g., background, light direction and intensity,

using our rendering system.
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Figure 12. Rendering results of the large scale waterfall scenes. Resolution: 1024×1024,

with 15.2 million particles.

4.2. Performance Evaluation

4.2.1. Data analysis

To evaluate our method, we list the rendering time with different particle numbers and

different resolutions in Table 2. These results indicate that our proposed rendering

method has achieved a real-time level. We can also render fluids containing more

than 30 million particles interactively. In Table 3, we further list the time-cost of

each rendering step in our method. From this timeing table, we can see that the

main contributions of this work: surface-depth estimation, isosurface extraction, and

normal computation cost of about 50% of the running time in our rendering system.

To further demonstrate the robustness of our rendering method, we selected differ-

ent isovalues defined in our rendering procedure in Section 3.1 and recorded rendering

times. In our method, a high isovalue will increase the sample times of rays cast from

the camera and influence our rendering time. In Figure 13, isovalues change from

❛
❛
❛
❛
❛
❛
❛
❛
❛

Resolution

Particle

count
779752 2027776 12394215 37975520 142612764

512×512 0.0097s 0.0274s 0.0891s 0.1565s 0.5926s

768×768 0.0127s 0.0362s 0.1128s 0.2119s 0.6600s

1024×1024 0.0178s 0.0514s 0.1568s 0.2966s 0.7840s

1440×1440 0.0270s 0.0779s 0.2474s 0.4494s 1.3879s

1920×1920 0.0424s 0.1226s 0.3733s 0.7062s 2.3663s

Table 2. Frame rendering time of our method with different particle numbers and different

resolutions for water-crown scenes (Figure 10 and Figure 11).
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❛
❛
❛

❛
❛

❛
❛
❛
❛
❛

Resolution

Rendering

step
Surface depth

estimation

isosurface

extraction

Surface normal

computation
Rendering

512×512 0.0133s 0.0092s 0.0258s 0.0408s

768×768 0.0169s 0.0113s 0.0328s 0.0518s

1024×1024 0.0235s 0.0157s 0.0455s 0.0721s

1440×1440 0.0268s 0.0308s 0.0713s 0.1185s

1920×1920 0.0601s 0.0392s 0.1382s 0.1358s

Table 3. Time cost of each rendering step in Figure 11 (left column); particle count: 12.4M.

10.0 to 30.0. From the top left, the time varies from 0.0174s per frame to 0.0182s

per frame, and the rendering time increased in a very slow gradient. The four sub-

figures all depict that the variances of the scenes with different particle numbers are

small, which indicates that the performance of our rendering method is not greatly

influenced by the threshold value and maintains a robust level. We especially selected

the medium isovalue in the experiments in this paper.

Figure 13. Time cost of our rendering method with different isovalues in different scenes

with different numbers of particles (seconds).

32

http://jcgt.org


Journal of Computer Graphics Techniques

Fast, High-Quality Rendering of Liquids

Vol. 7, No. 1, 2018

http://jcgt.org

Figure 14. Rendering results comparison between our method (top) and off-line software

(bottom). Particle number: 2 million, resolution: 1024×1024

4.2.2. Use as a Preview Application

Our rendering method can be use as a fast preview rendering system compared to

off-line software, e.g., 3ds Max. In this section, we give the results of a comparison

experiment in Figure 14. We imported the particle set generated by Realflow to our

rendering system and obtained the rendering results in Figure 14 (top row), then we

built the meshes generated by Realflow using the same particle set and imported them

to the off-line rendering software (3ds Max 2013 2 and V-Ray 3 2.40.03). Figure 14

(bottom row) depicts the rendering results of the off-line software with simple render-

ing setup: single spot light, max depth of reflection: 2, max depth of refraction: 2.

Although the rendering results achieved by the off-line software are better than

ours, the rendering time is intolerable. Table 4 lists the running time of our method

and the off-line method with different particle numbers. Note that the statistical time

results of the off-line method do not contain the mesh-generation step which con-

sumes a large amount of time. These results indicate that our proposed rendering

method achieved a real-time level and is suitable for high-quality preview applica-

tions, especially for large-scale SPH-based fluid.

2https://www.autodesk.com/products/3ds-max/
3https://www.vray.com/

33

http://jcgt.org


Journal of Computer Graphics Techniques

Fast, High-Quality Rendering of Liquids

Vol. 7, No. 1, 2018

http://jcgt.org

Method

❳
❳
❳
❳
❳
❳
❳
❳❳

Time

Particle No.
779752 2027776 12394215 37975520 142612764

Our method
Frame Time 0.0178s 0.05138s 0.1568s 0.2966s 0.7840s

Total Time 2.6704s 7.7076s 23.5200s 44.4990s 117.6530s

Off-line software
Frame Time 257.9521s 389.3879s 599.6077s 749.6510s 1199.7740s

Total Time 38692.8207s 58408.1873s 89941.1550s 112447.6500s 179966.1000s

Table 4. Frame rendering time and total rendering time of our method compared to off-line

software with different particle numbers. Total frames: 150, resolution: 1024×1024.

5. Conclusions

In this paper, we describe a simple and effective rendering technique for large-scale

particle-based fluid. Our approach relies on the combination of three steps: determine

an approximated surface by splatting particles on the view-port, find an isosurface

nearest to the camera by casting view rays from the approximated surface for each

pixel, and generate normals for isosurface pixels by performing PCA on the neigh-

bor particles of the surface point. Thus, our method highlights the computation and

memory resources on a narrow band near the isosurface and allows us to produce a

smooth and feature-preserving high-quality surface in real time. Furthermore, our

approach is straightforward to implement and can be integrated into existing particle-

based fluid-simulation systems easily. Finally, our approach is a general isosurface

extraction technique for particle sets which is not limited to fluid simulation. It can be

used for both preview rendering and real-time isosurface visualization for large-scale

particle sets in a wide range of applications.

There are several limitations to our method and possible improvements to be made

in the future. First, our method is view-dependent and only renders the surface nearest

to the camera. It does not support visualization for the fluid internal volume [Fraedrich

et al. 2010], such as holes. Second, we only use single-layer refraction, which is not

physically accurate. However, our result is close to two-interface refraction results is

in most cases due to the complexity of refraction [Wyman 2005], and the thickness-

based shading further gives an illusion of volume of the fluid. So our result is visually

convincing and can render surfaces more realistically compared to the four refractions

algorithm [Imai et al. 2016]. Third, we currently use the simplest ray-casting model

in which the reflection and refraction are traced only once in the rendering step. Some

advanced rendering techniques like ray tracing or photon mapping can be adopted in

the future to generate more realistic rendering results. Furthermore, there is a risk of

over-smoothing as the number of particles is increased, so some sampling measures

should be taken when we face this problem.
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MÜLLER, M., SCHIRM, S., AND DUTHALER, S. 2007. Screen space meshes. In Pro-

ceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation,

Eurographics Association, Aire-la-Ville, Switzerland, 9–15. URL: http://dl.acm.

org/citation.cfm?id=1272690.1272692. 18, 20, 22

NAVRATIL, P. A., JOHNSON, J., AND BROMM, V. 2007. Visualization of cosmological

particle-based datasets. IEEE Transactions on Visualization and Computer Graphics 13,

6, 1712–1718. URL: doi.ieeecomputersociety.org/10.1109/TVCG.2007.

70616. 20

OWENS, J. D., HOUSTON, M., LUEBKE, D., GREEN, S., STONE, J. E., AND PHILLIPS,

J. C. 2008. GPU computing. Proceedings of the IEEE 96, 5, 879–899. 25

REICHL, F., CHAJDAS, M. G., SCHNEIDER, J., AND WESTERMANN, R. 2014. Interactive

rendering of giga-particle fluid simulations. In Eurographics/ACM SIGGRAPH Symposium

on High Performance Graphics, The Eurographics Association, Aire-la-Ville, Switzerland,

105–116. URL: http://dl.acm.org/citation.cfm?id=2980009.2980021.

20

ROSENBERG, I. D., AND BIRDWELL, K. 2008. Real-time particle isosurface extraction. In

Proceedings of the 2008 symposium on Interactive 3D graphics and games, ACM, New

York, 35–43. URL: http://doi.acm.org/10.1145/1342250.1342256. 20

SIN, F., BARGTEIL, A. W., AND HODGINS, J. K. 2009. A point-based method for an-

imating incompressible flow. In Proceedings of the 2009 ACM SIGGRAPH/Eurograph-

ics Symposium on Computer Animation, ACM, New York, 247–255. URL: http:

//doi.acm.org/10.1145/1599470.1599502. 18

SOLENTHALER, B., AND PAJAROLA, R. 2009. Predictive-corrective incompressible SPH.

ACM Trans. Graph. 28, 3, 40. URL: http://doi.acm.org/10.1145/1531326.

1531346. 19

SZÉCSI, L., AND ILLÉS, D. 2012. Real-time metaball ray casting with fragment lists. In

Eurographics (Short Papers), Eurographics Association, Aire-la-Ville, Switzerland, 93–96.

19

VAN DER LAAN, W. J., GREEN, S., AND SAINZ, M. 2009. Screen space fluid rendering

with curvature flow. In Proceedings of the 2009 symposium on Interactive 3D graph-

ics and games, ACM, New York, 91–98. URL: http://doi.acm.org/10.1145/

1507149.1507164. 18, 20, 22, 24, 26

WALD, I., AND SEIDEL, H.-P. 2005. Interactive ray tracing of point-based models. In

Proceedings Eurographics/IEEE VGTC Symposium Point-Based Graphics, 2005., IEEE,

Los Alamitos, CA, 9–16. URL: http://doi.acm.org/10.1145/1187112.

1187176. 19

37

http://jcgt.org
http://dl.acm.org/citation.cfm?id=846276.846298
http://dl.acm.org/citation.cfm?id=1272690.1272692
http://dl.acm.org/citation.cfm?id=1272690.1272692
doi.ieeecomputersociety.org/10.1109/TVCG.2007.70616
doi.ieeecomputersociety.org/10.1109/TVCG.2007.70616
http://dl.acm.org/citation.cfm?id=2980009.2980021
http://doi.acm.org/10.1145/1342250.1342256
http://doi.acm.org/10.1145/1599470.1599502
http://doi.acm.org/10.1145/1599470.1599502
http://doi.acm.org/10.1145/1531326.1531346
http://doi.acm.org/10.1145/1531326.1531346
http://doi.acm.org/10.1145/1507149.1507164
http://doi.acm.org/10.1145/1507149.1507164
http://doi.acm.org/10.1145/1187112.1187176
http://doi.acm.org/10.1145/1187112.1187176


Journal of Computer Graphics Techniques

Fast, High-Quality Rendering of Liquids

Vol. 7, No. 1, 2018

http://jcgt.org

WILLIAMS, B. W. 2008. Fluid surface reconstruction from particles. Master’s thesis, Uni-

versity of British Columbia. URL: https://open.library.ubc.ca/cIRcle/

collections/24/items/. 18

WYMAN, C. 2005. An approximate image-space approach for interactive refraction.

ACM Trans. Graph. 24, 3, 1050–1053. URL: http://doi.acm.org/10.1145/

1073204.1073310. 34

YU, J., AND TURK, G. 2013. Reconstructing surfaces of particle-based fluids using

anisotropic kernels. ACM Trans. Graph, 32, 1, 5. URL: http://doi.acm.org/10.

1145/2421636.2421641. 18, 20, 23, 26

ZHANG, Y., SOLENTHALER, B., AND PAJAROLA, R. 2008. Adaptive sampling and render-

ing of fluids on the gpu. In Proceedings of the Fifth Eurographics/IEEE VGTC conference

on Point-Based Graphics, Eurographics Association, Aire-la-Ville, Switzerland, 137–146.

URL: http://dx.doi.org/10.2312/VG/VG-PBG08/137-146. 20

ZHANG, S., YANG, X., WU, Z., AND LIU, H. 2015. Position-based fluid control. In

Proceedings of the 19th Symposium on Interactive 3D Graphics and Games, ACM, New

York, 61–68. URL: http://doi.acm.org/10.1145/2699276.2699287. 29

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3,

965–972. URL: http://doi.acm.org/10.1145/1073204.1073298. 18

ZWICKER, M., PFISTER, H., VAN BAAR, J., AND GROSS, M. 2001. Surface splat-

ting. In Proceedings of the 28th annual conference on Computer graphics and interactive

techniques, ACM, New York, 371–378. URL: http://doi.acm.org/10.1145/

383259.383300. 20

Author Contact Information

Xiangyun Xiao

Digital ART Lab

School of Software

Shanghai Jiao Tong University

xiaoxiangyun@sjtu.edu.cn

Shuai Zhang

Digital ART Lab

School of Software

Shanghai Jiao Tong University

zhangshuai.03@bytedance.com

Xubo Yang

Digital ART Lab

School of Software

Shanghai Jiao Tong University

yangxubo@sjtu.edu.cn

Xiangyun Xiao, Shuai Zhang, and Xubo Yang, Fast, High-Quality Rendering of Liquids ,

Journal of Computer Graphics Techniques (JCGT), vol. 7, no. 1, 17–38, 2018

http://jcgt.org/published/0007/01/02/

38

http://jcgt.org
https://open.library.ubc.ca/cIRcle/collections/24/items/
https://open.library.ubc.ca/cIRcle/collections/24/items/
http://doi.acm.org/10.1145/1073204.1073310
http://doi.acm.org/10.1145/1073204.1073310
http://doi.acm.org/10.1145/2421636.2421641
http://doi.acm.org/10.1145/2421636.2421641
http://dx.doi.org/10.2312/VG/VG-PBG08/137-146
http://doi.acm.org/10.1145/2699276.2699287
http://doi.acm.org/10.1145/1073204.1073298
http://doi.acm.org/10.1145/383259.383300
http://doi.acm.org/10.1145/383259.383300
mailto:xiaoxiangyun@sjtu.edu.cn
mailto:zhangshuai.03@bytedance.com
mailto:yangxubo@sjtu.edu.cn
http://jcgt.org/published/0007/01/02/


Journal of Computer Graphics Techniques

Fast, High-Quality Rendering of Liquids

Vol. 7, No. 1, 2018

http://jcgt.org

Received: 2017-08-31

Recommended: 2017-11-25 Corresponding Editor: Patrick Cozzi

Published: 2018-03-29 Editor-in-Chief: Marc Olano

c© 2018 Xiangyun Xiao, Shuai Zhang, and Xubo Yang (the Authors).

The Authors provide this document (the Work) under the Creative Commons CC BY-ND

3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors

further grant permission for reuse of images and text from the first page of the Work, provided

that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly

venues and that any reuse is accompanied by a scientific citation to the Work.

39

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/



