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Sampling the GGX Distribution of Visible Normals

Eric Heitz
Unity Technologies

⇔
ellipsoid (αx, αy) hemisphere (αx = αy = 1)

Figure 1. Sampling the GGX distribution of visible normals (VNDF) is equivalent to sam-
pling the projected area of an ellipsoid, which can be mapped to sampling the projected area
of a hemisphere.

Abstract

Importance sampling microfacet bidirectional scattering distribution functions (BSDFs) using
their distribution of visible normals (VNDF) yields significant variance reduction in Monte
Carlo rendering. In this article, we describe an efficient and exact sampling routine for the
VNDF of the GGX microfacet distribution. This routine leverages the property that GGX is
the distribution of normals of a truncated ellipsoid, and sampling the GGX VNDF is equiv-
alent to sampling the 2D projection of this truncated ellipsoid. To do that, we simplify the
problem by using the linear transformation that maps the truncated ellipsoid to a hemisphere.
Since linear transformations preserve the uniformity of projected areas, sampling in the hemi-
sphere configuration and transforming the samples back to the ellipsoid configuration yields
valid samples from the GGX VNDF.

1. Introduction and Previous Work

1.1. The GGX Distribution

The GGX distribution is the normal distribution function (NDF) of an ellipsoid, i.e., it
measures the density of a given normal orientation on the surface of the ellipsoid. For-
mally, it is a distributionD such that if Ω is a solid-angle domain, then

∫
ΩD(ω) ∂ω is

the area of the surface of the ellipsoid whose normals are oriented within Ω. The idea
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Figure 2. The GGX distribution is the distribution of normals of an ellipsoid.

of representing a distribution of normals using an ellipsoid shape was invented inde-
pendently multiple times. To our knowledge, it was first introduced by Trowbridge
and Reitz [1975] in the physics literature. In computer graphics, Neyret derived an
equivalent distribution to represent volumetric materials [Neyret 1995; Neyret 1998].
Later, the same distribution was derived again by Walter et al. [2007] to model the
scattering of glass and named GGX, which stands for “ground glass unknown.” Cur-
rently, this microfacet distribution is one of the most widely used in the rendering
industry.

The GGX distribution uses only the upper part of the ellipsoid according to a
local frame. As shown in Figure 2, the ellipsoid is truncated to the upper hemisphere
in directionZ = (0, 0, 1), and it is described by two scaling (or roughness) parameters
αx and αy that represent the inverse lengths of the principal axes of the ellipsoid on
the X = (1, 0, 0) and Y = (0, 1, 0) directions. For a given normal defined in this
frame by N = (xn, yn, zn), the GGX distribution is given by

D(N) =
1

π αx αy

(
x2n
α2
x

+ y2n
α2
y

+ z2
n

)2 . (1)

In microfacet BSDFs, the GGX distribution is usually used with the Smith shadowing
model. The Smith shadowing function associated with the GGX distribution was first
introduced by Walter et al. [2007] for isotropic distributions (αx = αy) and gener-
alized to anisotropic GGX distributions by Heitz [2014]. For a given view direction
V = (xv, yv, zv), the Smith anisotropic GGX shadowing function is

G1(V ) =
1

1 + Λ(V )
, with Λ(V ) =

−1 +

√
1 +

α2
x x

2
v+α2

y y
2
v

z2v

2
. (2)

1.2. Importance Sampling Using the VNDF

Using microfacet BSDFs in Monte Carlo renderers requires importance-sampling
techniques. Historically, the classic approach consists of sampling microfacets us-
ing the NDF, but Heitz and d’Eon [2014] showed that using the distribution of visible

2

http://jcgt.org


Journal of Computer Graphics Techniques
Sampling the GGX Distribution of Visible Normals

Vol. 7, No. 4, 2018
http://jcgt.org

normals (VNDF)

DV (N) =
G1(V ) max (0, V ·N) D(N)

V · Z
(3)

instead of the NDF provides significant variance reduction. This is because the VNDF
contains visibility terms that appear in the BSDF expression that cancel out in the
importance-sampling weights, thus reducing the variance (see Appendix B).

2. Previous Work

VNDF sampling. Heitz and d’Eon [2014] provide analytic solutions for sampling
the VNDFs of the Beckmann and GGX distributions in their supplemental material.
To facilitate the VNDF sampling, their algorithms map the configuration to a simpler
configuration of unit roughness (αx = αy = 1). Unfortunately, even with unit rough-
ness, their solution for GGX is only approximate because it requires a fitted curve:
the derivations are made in slope space and the conditional inverse CDF of GGX does
not have a closed form in this space.

Sampling the projected area of an ellipsoid. The key observation used in this article
is that sampling the GGX distribution can be done exactly by sampling the projected
area of the associated ellipsoid. The idea of sampling the projected area of the el-
lipsoid was introduced by Neyret [1998] and Heitz et al. [2015] showed that it was
equivalent to sampling the VNDF of the ellipsoid’s NDF. However, they performed
this operation for a complete ellipsoid (also called SGGX distribution), while in the
case of the GGX distribution the ellipsoid is truncated to the upper hemisphere.

Sampling the projected area of a truncated ellipsoid. In this article, we use the sam-
pling algorithm introduced in the supplemental material [Walter et al. 2015] of Dong
et al. [2015]. They introduce a truncated-ellipsoid NDF that is a generalized GGX dis-
tribution whose associated ellipsoid is transformed not only by linear scaling but also
by skewness factors (the matrix A is non-diagonal). The idea behind their sampling
algorithm is to keep Heitz and d’Eon’s unit-roughness transformation that transforms
the truncated ellipsoid into a hemisphere, as we explain in Section 3. With this trans-
formation, the problem boils down to sampling the projected area of a hemisphere,
and they provide an area-preserving parameterization to do this, which we explain in
Section 4. In summary, the purpose of this article is not to introduce new ideas, as they
can already be found in substance in Walter and Dong’s supplemental material. Our
main contribution is to bring these ideas together into a simple and well-documented
routine for sampling the GGX VNDF.

Previous version of this article. An early version of this work was made available as a
non-peer-reviewed technical report [Heitz 2017]. However, this previous version uses
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another parameterization that cannot be used with view directions located in the lower
hemisphere (V ·Z < 0). This is never the case with classic microfacet BSDF models,
but there are special cases where this occurs, for instance Smith multiple-scattering
BSDFs model incident rays that can be located in the lower hemisphere after their
first bounce on the microsurface [Heitz et al. 2016]. In this article, we replaced the
previous parameterization by the one of Walter et al. [2015] that is not subject to this
limitation and can thus be used with multiple-scattering BSDFs.

3. Ellipsoid-hemisphere Transformation

In this section, we explain the transformation that maps an ellipsoid configuration to
a hemisphere configuration, as shown in Figure 3.

ellipsoid configuration hemisphere configuration

(a)

Ve

(b)

Vh

(d)

Ne

(c)

Nh

Figure 3. Ellipsoid-hemisphere transformation. We start by transforming the view vector Ve
of the ellipsoid configuration (a) to a view vector Vh in the hemisphere configuration (b). In
the hemisphere configuration, we sample a normal Nh by sampling the projected area of the
hemisphere (c). By transforming this normal back to the ellipsoid configuration, we obtain a
normal Ne sampled from the distribution of visible normals of the ellipsoid (d).
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3.1. Initial Ellipsoid Configuration

The initial ellipsoid configuration is shown in Figure 3(a). Ve denotes the view di-
rection, and the ellipsoid is given by the roughness parameters αx and αy. We also
consider two uniform random numbers U1 and U2 that we are going to use in the
sampling procedure.

vec3 sampleGGXVNDF(vec3 Ve, float alpha_x, float alpha_y, float U1, float U2)

{

...

}

3.2. Transforming the View Direction to the Hemisphere Configuration

The linear transformation that maps the ellipsoid of roughness αx and αy to the hemi-
sphere is represented by a 3× 3 matrix

A =

αx 0 0

0 αy 0

0 0 1

 . (4)

To move from Figure 3(a) to Figure 3(b), we compute a view vector in the hemisphere
configuration Vh by transforming the view vector Ve in the ellipsoid configuration:

Vh =
AVe
‖AVe‖

. (5)

// Section 3.2: transforming the view direction to the hemisphere configuration

vec3 Vh = normalize(vec3(alpha_x * Ve.x, alpha_y * Ve.y, Ve.z));

3.3. Sampling the Projected Area of the Hemisphere

In Figure 3(c), we sample a normal Nh by sampling the projected area of the hemi-
sphere. This part of the algorithm is explained in Section 4.

3.4. Transforming the Normal Back to the Ellipsoid Configuration

To move from Figure 3(c) to Figure 3(d), we transform the normal Nh in the hemi-
sphere configuration to obtain a normal in the ellipsoid configuration Ve. The ge-
ometric transformation is the inverse transformation as before, i.e., A−1. However,
since normals are not vectors but covectors, they are not transformed by A−1 but by
its inverse transpose matrix, which is

(
A−1

)−T
= A. The normal in the ellipsoid

configuration is thus

Ne =
ANh

‖ANh‖
. (6)
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Note that in the code we clamp the z-component to 0 to prevent numerical errors.

// Section 3.4: transforming the normal back to the ellipsoid configuration

vec3 Ne = normalize(vec3(alpha_x * Nh.x, alpha_y * Nh.y, max(0.0, Nh.z));

4. Sampling the Projected Area of a Hemisphere

In this section, we derive an area-preserving parameterization that we use to sample
the projected area of the hemisphere.

4.1. Orthonormal Basis

We start by constructing an orthonormal basis (Vh, T1, T2) (see Figure 4), where T1

is in the tangent plane orthogonal to Z = (0, 0, 1):

T1 =
Z × Vh
‖Z × Vh‖

=
(−yv, xv, 0)√

x2
v + y2

v

, (7)

T2 = Vh × T1. (8)

// Section 4.1: orthonormal basis (with special case if cross product is zero)

float lensq = Vh.x * Vh.x + Vh.y * Vh.y;

vec3 T1 = lensq > 0 ? vec3(-Vh.y, Vh.x, 0) * inversesqrt(lensq) : vec3(1,0,0);

vec3 T2 = cross(Vh, T1);

Vh

T1

T2

Nh

Figure 4. Orthonormal basis for sampling the projected area of the hemisphere.

4.2. Parameterization of the Projected Area

Shape of the projected area. Figure 5 shows the shape of the projected area of the
hemisphere. It is the signed sum of the projected areas of the two half disks. The
projected area of the half disk located in the tangent plane (in green) is proportional
to Z · Vh = zv, and the projected area of the other half disk (in blue) is proportional
to Vh · Vh = 1. If the view direction is below the horizon (Vh ·Z < 0), the green disk
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normal incidence grazing incidence below-horizon incidence

Figure 5. Shape of the projected area of the hemisphere. The projected area of the hemisphere
is the signed sum of the projected areas of the two half disks. If the view direction is below
the horizon the green disk partially masks the blue disk.

partially masks the blue disk. In all configurations, the shape of the projected area is
thus a disk whose lower boundary is moving and producing a uniform vertical scaling
such that the vertical segment [−

√
1− t21,+

√
1− t21] of abscissa t1 is uniformly

remapped to the interval [−(Vh · Z)
√

1− t21,+
√

1− t21]. The scaling factor of this
remapping is s = 1+(Vh·Z)

2 .

Parameterization of the projected area of the hemisphere. Figure 6 shows that a
point (t1, t2) uniformly sampled in the unit disk using a polar parameterization,

(r, φ) =
(√
U1, 2π U2

)
, (9)

(t1, t2) = (r cosφ, r sinφ), (10)

is mapped to a point (t1, t
′
2) uniformly sampled in the shape of the projected area by

applying the vertical remapping:

t′2 = (1− s)
√

1− t21 + s t2. (11)

// Section 4.2: parameterization of the projected area

float r = sqrt(U1);

float phi = 2.0 * M_PI * U2;

float t1 = r * cos(phi);

float t2 = r * sin(phi);

float s = 0.5 * (1.0 + Vh.z);

t2 = (1.0 - s)*sqrt(1.0 - t1*t1) + s*t2;
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(t1, t2)

T1

T2

(t1, t
′
2)

T1

T2

(t1, t
′
2)

T1

T2

T1 T1 T1

Figure 6. Parameterization of the projected area of the hemisphere. The shape of the projected
area in all configurations is a disk whose lower boundary is moving and producing a uniform
vertical scaling. Hence, a polar parameterization of the unit disk compressed by a uniform
vertical scaling yields an area-preserving parameterization of the projected area.

4.3. Reprojection on the Hemisphere

Finally, we reproject the point t1 T1 + t2 T2 onto the hemisphere to obtain its normal.
To do this, we compute the component vh in direction Vh such that the point

Ph = t1 T1 + t2 T2 + vh Vh (12)

is normalized, i.e., we compute

vh =
√

1− t21 − t22. (13)

Since the point Ph is on a hemisphere, the associated normal is Nh = Ph. Note that
in our implementation we clamp 1− t21− t22 to 0 in order to avoid numerical-precision
errors.

// Section 4.3: reprojection onto hemisphere

vec3 Nh = t1*T1 + t2*T2 + sqrt(max(0.0, 1.0 - t1*t1 - t2*t2))*Vh;

5. Evaluation

Performance. We compared the performance of our final implementation from List-
ing 1 to the implementation provided by Heitz and d’Eon [2014] by generating 10 mil-
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lion random samples on a Intel(R) Core(TM) i7-5960X. The generation takes 1.46s
with our implementation and 2.31s with Heitz and d’Eon’s implementation. Our im-
plementation is 58% faster.

Visualizing the parameterization. To visualize the parameterizations used by the
sampling algorithms, we use them to warp a unit-square checker and a point set in Fig-
ure 7. To ease the visualization, we display the results in the 2D Cartesian slope space
by converting the 3D normal directions to 2D slope values: (x̃, ỹ) =

(
−xn
zn
, −ynzn

)
.

Since our algorithm and the one of Heitz and d’Eon [2014] use the same linear trans-
formation to map the configuration to the unit-roughness or hemisphere configuration
(where αx = αy = 1) and their difference is how they operate in this configuration,
we display them in this configuration for varying view angles.

unit square checker and point set

DV [Heitz and d’Eon 2014] ours

θ v
=

0
θ v

=
π
/4

θ v
=
π
/2

Figure 7. Visualizing the parameterization. We warp the unit-square checker and point set us-
ing the sampling algorithms. We compute the warping in the unit-roughness (or hemisphere)
configuration and visualize it in slope space.
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6. Conclusion

We have described an efficient implementation of a GGX VNDF sampling routine.
In contrast to the routine of Heitz and d’Eon [2014] that used a fitted curve, this new
routine is exact. Furthermore, it is about 58% faster according to our experiments and
simpler to implement. Finally, it can be used with view directions located in the lower
hemisphere, which makes it usable for sampling multiple-scattering BSDFs based on
the GGX distribution [Heitz et al. 2016].
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A. Complete Implementation of the GGX VNDF Sampling Routine

// Input Ve: view direction

// Input alpha_x, alpha_y: roughness parameters

// Input U1, U2: uniform random numbers

// Output Ne: normal sampled with PDF D_Ve(Ne) = G1(Ve) * max(0, dot(Ve, Ne)) * D(Ne) / Ve.z

vec3 sampleGGXVNDF(vec3 Ve, float alpha_x, float alpha_y, float U1, float U2)

{

// Section 3.2: transforming the view direction to the hemisphere configuration

vec3 Vh = normalize(vec3(alpha_x * Ve.x, alpha_y * Ve.y, Ve.z));

// Section 4.1: orthonormal basis (with special case if cross product is zero)

float lensq = Vh.x * Vh.x + Vh.y * Vh.y;

vec3 T1 = lensq > 0 ? vec3(-Vh.y, Vh.x, 0) * inversesqrt(lensq) : vec3(1,0,0);

vec3 T2 = cross(Vh, T1);

// Section 4.2: parameterization of the projected area

float r = sqrt(U1);

float phi = 2.0 * M_PI * U2;

float t1 = r * cos(phi);

float t2 = r * sin(phi);

float s = 0.5 * (1.0 + Vh.z);

t2 = (1.0 - s)*sqrt(1.0 - t1*t1) + s*t2;

// Section 4.3: reprojection onto hemisphere

vec3 Nh = t1*T1 + t2*T2 + sqrt(max(0.0, 1.0 - t1*t1 - t2*t2))*Vh;

// Section 3.4: transforming the normal back to the ellipsoid configuration

vec3 Ne = normalize(vec3(alpha_x * Nh.x, alpha_y * Nh.y, std::max<float>(0.0, Nh.z)));

return Ne;

}

Listing 1. Sampling the GGX VNDF: complete implementation.

B. Usage in a Monte Carlo Renderer

In this section, we briefly recall how to use the routine of Listing 1 to compute a
Monte Carlo estimator of the direct illumination,

Ī =

∫
Ω
I(L) ρ(V,L) (L · Z) dωL, (14)

where V is the view direction, I(L) is the radiance arriving at the shading point from
direction L, and ρ(V,L) is a GGX microfacet BRDF.
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GGX microfacet BRDF. Typically, a microfacet BRDF has the following expression:

ρ(V,L) =
F (V,H)D(H)G2(V,L)

4 cos θV cos θL
, (15)

where H is the half-vector between V and L, F (V,H) is a Fresnel term, D(H) is
the GGX distribution, and G2(V,L) is the shadowing-and-masking function [Heitz
2014].

Importance sampling using the VNDF. The sampling routine of Listing 1 generates
microfacet samples Ni whose PDF is the VNDF DV (Ni) of Equation (3). By reflect-
ing the view direction, we obtain light samples Li:

Li = reflect (V,Ni) , (16)

whose PDF is the VNDF weighted by the Jacobian of the reflection operator:

PDF (Li) =
DV (Ni)

4 (V ·Ni)
. (17)

Monte Carlo estimator of the direct illumination. With this importance sampling pro-
cedure, we obtain a stochastic estimator of Equation (14):

Ī ≈ 1

n

n∑
i=1

I(Li)
ρ(V,Li) (Li · Z)

PDF (Li)
(18)

=
1

n

n∑
i=1

I(Li)
F (V,Li)G2(V,Li)

G1(V )
. (19)

This estimator usually has low variance because most of the microfacet BRDF terms
cancel with the PDF terms and the remaining fraction, F (V,Li)G2(V,Li)

G1(V ) , takes values
in [0, 1]. For more details on these derivations, we refer the reader to the original
VNDF-sampling article [Heitz and d’Eon 2014].
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