Journal of Computer Graphics Techniques Vol. 8, No. 1, 2019
Implementation of Fast and Adaptive Procedural Cellular Noise http://jcgt.org

Implementation of Fast and Adaptive
Procedural Cellular Noise

Théo Jonchier Alexandre Derouet-Jourdan Marc Salvati
OLM Digital Inc. OLM Digital Inc. OLM Digital Inc.
ASALI-SIR, XLIM

() (b) (©) (d)

Figure 1. 3D cellular noise renderings. Rock shader with (a) uniform and (b) non-uniform
cellular noise. Flake shader with (c¢) uniform and (d) non-uniform cellular noise. Non-uniform

cellular noise increases variation in the output.

Abstract

Cellular noise as defined by Worley is a useful tool to render natural phenomena, such as skin
cells, reptiles scales, or rock minerals. It is computed at each position in texture space by
finding the closest feature points in a grid. In a preliminary work, we showed in 2D space
how to obtain non-uniform distribution of points by subdividing cells in the grid and that
there is an optimal traversal order of the grid cells. In this paper, we generalize these results
to higher dimensions, and we give details about their implementation. Our optimal traversal
in 3D proves to be 15% to 20% faster than the standard Worley algorithm.

1. Introduction

In his seminal paper [Worley 1996], Steven Worley introduced the so-called proce-
dural cellular noise to render several natural phenomena, such as skin cells, reptiles
scales, or rock minerals. The procedural cellular noise is constructed using a set of
feature points spread through space and a set of basis functions F;, that associate to

35

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 8, No. 1, 2019
Implementation of Fast and Adaptive Procedural Cellular Noise http://jcgt.org

a location z, the distance F,(x) to the nth-closest feature point. The basis functions
F,, are linearly combined to form the final result.

The procedural cellular noise is designed to distribute the feature points in a grid’s
cells, each cell containing a random number of points. This number, as well as the
positions of the feature points in the cell are computed on-the fly based on the location
of the cell. For a given location z, it is possible to compute F} to Fy by visiting a
restricted neighborhood (a disk of radius 2) of cells around the one containing .

In a preliminary work restricted to a two-dimensional space [Jonchier et al. 2016],
we showed that it was possible to optimize the order in which the neighbor cells are
visited to compute F,,. Moreover, by using a quadtree structure, where a cell either
contains a feature point or is cut in a 2 X 2 sub-grid, we allowed for non-uniform
distribution of feature points while still conserving a fast computation.

In the present paper, we show how the traversal of the adaptive grid can be opti-
mized in 3D and 4D by using the same type of optimal order of neighbor cell traver-
sals. We detail how we implement this optimization and, in particular, how to auto-
matically pre-compute the traversal orders.

2. Procedural Cellular Noise

In this section, we recall the basic idea about procedural cellular noise and its adaptive
version. We will start with a regular grid before explaining how to extend the concept
to a multi-resolution grid. In this description, we focus on the case of one feature point
per grid cell. The case of multiple feature points per grid cell as originally presented
in [Worley 1996] is similar.

2.1. Cellular Noise with Regular Grid

Typical cellular noise uses a regular grid (see Figure 2 (a)) where querying a point is
straightforward and given in the following steps.

(a) b)

Figure 2. (a) Regular grid; (b) quadtree grid.

36

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 8, No. 1, 2019
Implementation of Fast and Adaptive Procedural Cellular Noise http://jcgt.org

10 8 | 9

15|14 |0 | 2|12

4|3 DX 1|

167 5|6 |13

19 | 17 | 18

(a) (b)
Figure 3. (a) Neighborhood (in blue) of a square s (in red); (b) Optimal order of neighbor

traversal for query located in the shaded area of the central square. The order is symmetrical

for all other regions.

1. Compute the square (i,) that contains the query point (typically divide the
coordinates by the square size or use the integer part);

2. Use a 2D hash function to obtain the feature point of the square (¢, j) and com-
pute the distance to the query point;

3. Visit the neighborhood (see Figure 3 (a)) and use the hash function to compute
the feature points and their respective distance to the query point.

To reduce the number of visited neighbors, [Worley 1996] proposes to compute
the distance from the query point to the boundary of rows of neighbors. If the dis-
tance to the closest current point is smaller, then the entire row can be discarded. The
simple idea of [Jonchier et al. 2016] is to use the distance to each neighboring square
boundary and visit each from the closest to the furthest (see Figure 3 (b)). As soon as
the feature point is closer than a given neighbor boundary, the rest of the neighbors
can be discarded. We call this distance a threshold as it triggers a break in the visit
of the neighbors. For efficiency, the threshold is computed as the Chebyshev distance
(d(p, q) = max |p; — q;|) from the query point to the closest point on the neighbor-cell
boundary. The cell boundary being axis-aligned, computing this distance boils down
to computing the maximum coordinate of the query point in absolute value. What
makes this technique work efficiently is that there is a limited number of possible
neighbor traversal orders. They are given by the first and second neighbor squares.
It allows us to cut the square containing the query point into eight regions (see Fig-
ure 3 (b)), each one associated to a precomputed traversal order.

37

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 8, No. 1, 2019
Implementation of Fast and Adaptive Procedural Cellular Noise http://jcgt.org

2.2. Cellular Noise with Quadtree Grid

To obtain non-uniformity in the distribution of feature points, we use a quadtree struc-
ture (see Figure 2 (b)). Each square can either contain a point or be split in four. First
we start by locating the query point in the quadtree structure, meaning finding the
square that contains the query point and a feature point:

1. Start at level k¥ = 0;

2. Compute the square (4, j, k) to which the query point belongs;

3. Use a 3D hash function for key (i, 7, k) to determine if the square contains a
point or need to be split;

4. If the square contains a point, use a 3D hash function to obtain the feature point
of the square (3, j, k);

5. If the square need to be split, iterate from step 2 with k = k + 1.

When computing the closest feature point, we need to visit neighbors of the square
where the query point is located. We go through the neighbors at the same level [as
the square in the optimal order as defined in Figure 3 (b).

1. Compute the center of the neighbor at the level [;

2. Starting with k& = 0, use a hash function to know if the corresponding square
splits or not;

3. Ifitsplits and k < [iterate from step 2, with k = k + 1;

4. If it splits and k£ >= [, process the four children in optimal order;

,,,,, 1
“ | 31010
_ 1
""" 3 3 (3000
0 |
5 3 |3 11
_- 77777
e 2 2 2|1 |1
] s
| 2 12 |1
2 3 b

Figure 4. (a) Traversal patterns for sub-square; (b) Relative position to the square containing
the query point (in gray). The number determines the traversal pattern to use when visiting
the children of the squares in the neighborhood.

38

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 8, No. 1, 2019
Implementation of Fast and Adaptive Procedural Cellular Noise http://jcgt.org

5. If it does not split, use a hash function to compute the feature point and update
the threshold if necessary.

The optimal order in Step 4 to process children of a square is shown in Figure 4. It
follows the same principle, that is, to visit the squares in the increasing order of their
distance to the query point. The recursive process of the children is similar to that of
the regular grid with the update of the threshold; the process stops when we are sure
that there are not any closer points.

3. Implementing Optimal Traversal

In this section we explain how to implement efficiently the optimal order of traversal
as given in Section 2 . Section 3.1 considers the 2D case, and Section 3.2 treats its
generalization to higher dimensions.

3.1. 2D implementation
We implement the optimal order using the following tables:
e Optimal traversal orders table: orders|orderld], the sequence of the neighbor
ids (see Figure 5) for the given order id. Computed statically.

e Relative coordinates table: neighbors[neighborld], offsets to compute the
neighbor coordinates in the virtual grid. Computed statically.

e Depth order table: depth_orders[neighborld]: the sequence of traversal or-
ders of children of a square according to Figure 4. Computed statically.

e Threshold table: lower_bounds[neighborId]. Computed dynamically.

In Figure 5, we introduce the primary and secondary neighbors. From the Cheby-
shev distance properties, we deduce that we never need to compute the thresholds of

Figure 5. Medium blue indicates a primary neighbor, dark blue indicates a secondary neigh-

bor, with the static index for primary neighbors (0 to 7) and secondary neighbors (8 to 19).

39

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 8, No. 1, 2019
Implementation of Fast and Adaptive Procedural Cellular Noise http://jcgt.org

float F1(Point qg) {
Cell ¢ = retrieve_cell(q);
float u = g.u - c.i;
float v = q.v - c.J;
int traversal_order_id = traversal_id(u, v);
float d = distance(qg, point_at(c));
for(int i = 0 ; i1 < neighbors_count; ++i) {
int neighbor_id = orders|[traversal_order_id] [i];
Cell offset = neighbors[neighbor_id];
Cell neighbor = ¢ + offset;
float lower_bound = 0.0;
if (is_primary (neighbor_id))
lower_bound = lower_bounds[neighbor_id];
if (d > lower_bound) {

d = min (compute_distance (g, point_at (neighbor)), d);
} else {
break;

}

return d;

Listing 1. Distance to the closest feature point, following the optimal order.

the secondary neighbors. Indeed, the threshold of cell 12 in Figure 5 is equal to the
max of the thresholds of cells 1 and 4. It means that when we visit both of these cells,
then, necessarily, we visit cell 12, making the threshold of 12 inconsequential. Then,
given the tables, Listing 1 explains how to compute the distance to the closest feature
point using optimal order. Most of the tables can be pre-computed, reducing what is
computed dynamically and therefore the overall computation time by 10% to 20% as
shown in Section 4. The function ¢s_primary returns whether a neighbor is a primary
neighbor or not based on its id. The integer netghbors_count represents the number
of neighbors we may visit to find the closest feature point. It is equal to 20 in 2D.

3.2. Generalization to Higher Dimension

To extend the cellular noise to 3D/4D, we just need to compute the 3D/4D version of
the tables introduced in Section 3.1. Listing 1 may then be used with very few trivial
modifications. In 2D, a square is divided in eight different regions (see Figure 3 (b)),
for which we need to create the optimal order of the 20 neighbors which is manageable
by hand. In 3D, the number of regions is six times bigger: 48 traversal orders of 116
neighbors. In 4D, the number gets even larger with 384 possible traversal orders
of 608 neighbors. Those tables need to be automatically generated. The relative
coordinates table generation is straightforward. We compute the optimal traversal
orders table by sorting the cubes of the neighborhood by their Chebyshev distance to

40

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 8, No. 1, 2019
Implementation of Fast and Adaptive Procedural Cellular Noise http://jcgt.org

the center of each region (corresponding to a traversal order). When two neighbors
have the same Chebyshev distance, the primary neighbor should appear before the
secondary. The primary and secondary neighbors definition in higher dimension is a
straightforward generalization of the 2D case where the primaries are located on the
axis (see Figure 5).

As for the depth order table, the idea is similar to the neighbor optimal traversal
order. We create an order with increasing Chebyshev distance of the children to the
query-point square.

For more details, a Python 3 script that computes all the necessary optimal order
tables, as well as a C program illustrating how to use them by generating a picture of
a 2D cellular noise are found in the supplemental materials. The C program contains
Listing 1 with only minor modifications necessary for a practical implementation.

4, Results

For our experiments we use a Dell Precision T1700 with a XeonE3-1241v3 3.5GHz
CPU. The production results are rendered using Arnold 4.2.13.4.

The hash function we use is based on a multiplicative congruential pseudo-random
number generator (MCG) [Park and Miller 1988]. We seed it by multiplying the input
numbers by large prime and perform a xor operation. The result of the hash function
is given by the first iteration of the MCG.

We compare our optimal traversal order to the traversal order defined by Worley
in [Worley 1996]. We restrict the cellular noise to using only one feature point per
grid cell. We show the results in Table 1. With our optimal order, we reduce the
computation time by around 15%.

We have two production shaders (Rock and Flakes) that intensively use 3D cel-
lular noise. Thanks to our generalization of [Jonchier et al. 2016] to 3D, we improve
the rendering time and enable more variation in the details with the adaptive feature.
Comparison of our production quality rendering using the adaptive feature are shown
in Figure 1.

In Table 2, we compare our new cellular noise implementation to our own stan-
dard Worley implementation. We also compare with another hash function based on

Worley Ours

7.8s 6.5s (x0.83)
10.44s | 8.93s (x0.86)
13.69s | 11.15s (x0.81)
18.27s | 14.41s (x0.79)

B~ W =3

Table 1. Computation times (in seconds, for 16M queries) of F;, in 3D following Worley

traversal and the optimal traversal.

41

http://jcgt.org

Journal of Computer Graphics Techniques

Vol. &, No. 1, 2019

Implementation of Fast and Adaptive Procedural Cellular Noise http://jcgt.org
Hash Function Permutation Table MCG
traversal order | Worley Ours Worley Ours
Rock (4k, 4spp) 103s | 955(x0.92) | 113s | 103s(x0.91)
Flake (4k, 1spp) 66s 54s (x0.82) 85s 72s (x0.85)

Table 2. Computation times (in seconds) of our previous and new cellular noises. We compare
two hash functions: linear congruential MCG and permutation table.

a permutation table inspired by [Perlin 2002]. We compute the seed the same way as
the MCG-based hash, but the final result is obtained by performing look-ups in a per-
mutation table. Using any hash function, we get roughly a 10% to 20% improvement
in computation time, depending on the number of calls to the cellular function. We
can also see the importance of the hash function in the computation time.

We also compare our implementation to the reference implementation of the pro-
duction renderer Arnold. The shader API provides a simple function (AiCellular) to
create 3D cellular noise, that is stated as a Worley noise implementation. The compu-
tation times are given in Table 3. The difference in the hash function computation time
becomes less noticeable because of the renderer overhead (more than 85%). How-
ever, we can clearly see that Arnold could benefit from our optimal order to increase
its cellular noise performance. We get 20% improvement for the overall rendering.
The renderer overhead set aside, our noise proves to be a lot faster. With two levels
in the adaptive grid, we get computation times similar to Arnold ones. Our cellular
noise is then more efficient, while still giving more expressiveness to the artists.

Ours with Ours with
Shaders Arnold Table / MCG Two Levels
MCG
Time(s)
26/2 1
4K, 4spp 33 6/27 3
Time(s) no 10 3/4 3
overhead
Output
Render time for Arnold 4k 4spp, empty shader 23s

Table 3. Comparison between our algorithm and Arnold implementation.

42

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 8, No. 1, 2019
Implementation of Fast and Adaptive Procedural Cellular Noise http://jcgt.org

5. Conclusion

We presented in this paper how to generalize and implement the optimal order traver-
sal of neighbors in the computation of grid-based cellular noise. The optimal order
reduces the computation time of the cellular noise by around 15%.

We believe there is still room for further optimization. We could compute more
precise thresholds during the depth traversal depending on the query-point position
and then reduce unnecessary distances computations. Also, when we visit the neigh-
bor squares, we might encounter a square that has a lower level. In this case, we try to
visit a square that is smaller than the actual neighbor containing feature points. The
problem in that case is that we might visit the actual neighbor square with a lower
level several times. Finding a way to reduce the number of visits would improve the
overall computation time.

References

JONCHIER, T., SALVATI, M., AND DEROUET-JOURDAN, A. 2016. Procedural Non Uniform
Cellular Noise. In Symposium on Mathematical Progress in Expressive Image Synthesis
(MEIS2016), Springer, Berlin, vol. 69 of MI Lecture Note Series, 28-39. URL: https:
//www.springer.com/us/book/9789811328497. 36,37, 41

PARK, S. K., AND MILLER, K. W. 1988. Random number generators: Good ones are
hard to find. Commun. ACM 31, 10 (Oct.), 1192-1201. URL: https://dl.acm.org/
citation.cfm?id=63042. 41

PERLIN, K. 2002. Improving noise. ACM Transactions on Graphics (TOG) 21, 3, 681-682.
URL: https://dl.acm.org/citation.cfm?id=566636. 42

WORLEY, S. 1996. A cellular texture basis function. In Proceedings of the 23rd Annual
Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, SIG-
GRAPH ’96,291-294. URL: http://doi.acm.org/10.1145/237170.237267.
35, 36, 37, 41

Index of Supplemental Materials

We provide a Python 3 script optimal _order by_sort.py at http://www. jcgt.
org/published/0008/01/02/code. zip that implements the computation of all the
optimal orders in dimensions 2, 3 and 4. We also provide a C implementation of the runtime,
restricted to the 2D case, to illustrate how the optimal orders can be used.

Some results of the adaptive cellular noise can be seen in a short videoat http://www.
jcgt.org/published/0008/01/02/optimal_cellular_noise_video.mp4.

43

http://jcgt.org
https://www.springer.com/us/book/9789811328497
https://www.springer.com/us/book/9789811328497
https://dl.acm.org/citation.cfm?id=63042
https://dl.acm.org/citation.cfm?id=63042
https://dl.acm.org/citation.cfm?id=566636
http://doi.acm.org/10.1145/237170.237267
http://www.jcgt.org/published/0008/01/02/code.zip
http://www.jcgt.org/published/0008/01/02/code.zip
http://www.jcgt.org/published/0008/01/02/optimal_cellular_noise_video.mp4
http://www.jcgt.org/published/0008/01/02/optimal_cellular_noise_video.mp4

Journal of Computer Graphics Techniques Vol. 8, No. 1, 2019
Implementation of Fast and Adaptive Procedural Cellular Noise http://jcgt.org

Author Contact Information

Théo Jonchier Alexandre Derouet-Jourdan ~ Marc Salvati

OLM Digital Inc. / OLM Digital Inc. OLM Digital Inc.
ASALI-SIR, XLIM Mikami Bldg, 2F 1-18-10 Mikami Bldg, 2F 1-18-10
123, avenue Albert Thomas Wakabayashi Wakabayashi

87060 Limoges CEDEX Setagaya-ku, Tokyo 154-0023 Setagaya-ku, Tokyo 154-0023
France Japan Japan

theo.jonchier @unilim.fr alexandre.derouet- salvati.marc @olm.co.jp

jourdan @olm.co.jp

Théo Jonchier, Alexandre Derouet-Jourdan, Marc Salvati, Implementation of Fast and Adap-
tive Procedural Cellular Noise, Journal of Computer Graphics Techniques (JCGT), vol. 8, no.
1, 35-44, 2019

http://jcgt.org/published/0008/01/02/

Received: 2018-06-07
Recommended: 2018-10-08 Corresponding Editor: Marc Olano
Published: 2019-01-17 Editor-in-Chief: Marc Olano

(© 2019 Théo Jonchier, Alexandre Derouet-Jourdan, Marc Salvati (the Authors).

The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

44

http://jcgt.org
mailto:theo.jonchier@unilim.fr
mailto:alexandre.derouet-jourdan@olm.co.jp
mailto:alexandre.derouet-jourdan@olm.co.jp
mailto:salvati.marc@olm.co.jp
http://jcgt.org/published/0008/01/02/
http://creativecommons.org/licenses/by-nd/3.0/

