Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

Practical Hash-based Owen Scrambling

Brent Burley
Walt Disney Animation Studios

—
®

i

0.0021 0.0017

; v o052 s Rooas s
Sobol-RDS Sobol-enum Sobol-Owen

independent Laine-Karras

Figure 1. Top: three configurations of the Cornell Box rendered with Owen-scrambled Sobol
sampling: (a) direct lighting at 16 spp, (b) global illumination with participating media and
depth-of-field at 16 spp, (c) global illumination with a subpixel checkerboard texture on the
back wall and floor at 64 spp. Bottom: detail images with RMSE values indicated compar-
ing (from left to right) independent sampling, Laine-Karras sampling, Sobol sampling with
random digit scrambling (RDS), Sobol-RDS sampling enumerated over the image plane, and
Owen-scrambled Sobol sampling. With favorable integrands (a) and (b), Owen scrambling
provides the lowest error, comparable to enumerated Sobol but without the structured arti-
facts faintly visible in that method for integrand (b). With an unfavorable integrand (c), unlike
the other methods, Owen scrambling provides error comparable to independent sampling and
avoids the structured artifacts visible in the other Sobol methods.

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

Abstract

Owen’s nested uniform scrambling maximally randomizes low-discrepancy sequences while
preserving multidimensional stratification. This enables advantageous convergence for favor-
able integrands and bounded error for unfavorable ones, and makes it less prone to structured
artifacts than other scrambling methods. The Owen-scrambled Sobol sequence in particu-
lar has been gaining popularity recently in computer graphics. However, implementations
typically use a precomputed table of samples which imposes limits on sequence length and
dimension.

In this paper, we adapt the Laine-Karras hash function to achieve an implementation of
Owen scrambling for the Sobol sequence that is simple and efficient enough to perform on-
the-fly evaluation for sequences of indeterminate length and dimension and in arbitrary sample
order, readily permitting parallel, progressive, or adaptive integration. We combine this with
nested uniform shuffling to enable decorrelated reuse of the sequence for padding to higher
dimensions. We discuss practical-use considerations, and we outline how hash-based Owen

scrambling can be extended to arbitrary base for use with non-base-two sequences.

1. Introduction

Quasi-Monte Carlo (QMC) integration offers faster convergence for functions with
bounded variation by using low-discrepancy samples rather than independent ones.
In randomized quasi-Monte Carlo (RQMC), randomness is carefully introduced into
the low-discrepancy samples to achieve unbiased integration and to perform variance
estimation while preserving the low-discrepancy properties. For examples of RQMC
use in computer graphics, see the works by Keller [1995; 2006; 2013]. For a general
overview of RQMC methods, see the survey by L’Ecuyer and Lemieux [2005].

The Sobol sequence is a popular choice due to its multidimensional stratifica-
tion and computationally efficient base-two construction, and random digit scram-
bling [Matousek 1998] is often used as the randomization method due to its ease of
application. However, of the various randomization methods, only the nested uniform
scrambling method introduced by Owen [1995] fully randomizes a low-discrepancy
sequence which can improve convergence over QMC for both best- and worst-case
integrands. In addition to having potentially lower error, nested uniform scrambling
(commonly referred to as “Owen scrambling”) is also less susceptible to structured
artifacts than random digit scrambling, as illustrated in Figure 1.

Convergence plots comparing Owen scrambling with random digit scrambling
for various functions are shown in Figure 2. Independent sampling converges as
O(N -1/ 2) in every case, as predicted by Monte Carlo theory. For the two smooth
functions, gaussian and bilinear, Sobol sampling with random digit scrambling con-
verges as O(N 1), while Owen-scrambled Sobol approaches O(N~3/2) when N is a
power of two. In all examples tested, Owen-scrambled Sobol results in comparable or
smaller error than random digit scrambling—profoundly smaller in some cases, such
as the pulsetrain function shown in the figure.

2

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020

Practical Hash-based Owen Scrambling http://jcgt.org
10° e disk 10° — triangle —
ST SN N 1 wtp TS]
107 } e T 1 10?2} e T]
107} AN 1 10}] ——]
S o — independent
\ > — Sobol-RDS
10 '] — Sobol-Owen
..... N-1/2
10° - N |
- N-3/2 b

L

S5 T 55 7 o

N
-
st

N
)

25 26 27 28

step gaussian

100 55— s v St girs 100 5t s
20 20 200270 20 22 20 20 27 2727272 20 2 22 20 20 2° 2722722
10° bilinear — pulsetrain
10° |]
107 AN
10t} RN -
102) . Sel
102 . ~J.
-3 KN
10 10° |
-4 S
10 10%
10° 105 L .
R S T - a as rae TE L e EVAR I s Ls bare Y
20 20 20 27 20 22 2° 20 20 27 27207 2 2° 20 2° 27 20 22 20 20 27 27 27272

Figure 2. Convergence plots of error vs. sample count (V) for various functions (all
with an expected value of 1): disk = 2ifz? + > < 2;

T

triangle = 2ify > x;

exp*wzfyz; bilinear = 4xy; pulsetrain = 2if 642 mod 1 < 1. The

merf21 2

RMSE is computed from 10,000 trials for each value of N from 1 to 4096. All except pulse-
train are reproduced from the paper by Christensen et al. [2018].

gaussian =

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

In Section 2 we briefly review the Sobol sequence, Owen scrambling, and related
work. In Section 3 we describe how Owen scrambling can be implemented using
a hash function, and we show how the particularly efficient base-two hash function
from Laine and Karras [2011] can be adapted to Owen scrambling. In Section 4 we
show how nested uniform scrambling and nested uniform shuffling can be combined
for padding the randomized Sobol sequence to higher dimension. In Section 5 we
review the benefits of Owen scrambling in more detail, we discuss considerations for
practical use, and we explain how hash-based Owen scrambling can be extended to
arbitrary bases.

2. Background

2.1. Low-discrepancy Sequences

Discrepancy is a measure of how unevenly a point set is distributed. A low-discrepancy
point set is one where the points are more evenly distributed, without the large gaps or
significant clumps of points typical of randomly distributed points. A low-discrepancy
sequence is a progressive construction that fills in the gaps and maintains the low-
discrepancy quality as points are added.

Some low-discrepancy sequences can be characterized in (#,s)-notation [Niederre-
iter 1987] where s is the dimensionality and ¢ is a measure relating to the discrepancy:
A (t,5)-sequence constructed in base b can be considered an infinite series
of (t,m,s)-nets for every positive integer m, each net being a set of b
points, with each elementary interval of volume 1/b"" containing at most

b' points.
Importantly, if ¢ = 0, all elementary intervals contain exactly one point and the se-
quence is considered to be perfectly stratified, as illustrated in Figure 3.

The radical-inverse sequence is a (0,1)-sequence where the base-b digits of the
sample index are simply reflected across the radix point. For example, in base two,
sample index 13 = 11015 has value 0.10115 = 1/24+1/8+41/16 = 11/16. Most low-
discrepancy sequences are derived in some way from the radical-inverse sequence.

— = [[T

. T i h[..”.

Figure 3. The first 16 points of the 2D Sobol sequence with all elementary intervals with

volume 1/16 indicated. Observe that each elementary interval contains exactly one point.

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

2.2. Sobol Sequence

The Sobol sequence [Sobol” 1967] is a multidimensional (¢, s)-sequence in base two.
Each dimension uses the radical-inverse sequence but with carefully permuted sam-
ple ordering. For instance, the first 16 samples of the Sobol sequence in every di-
mension are: (0, 1/2, {1/4, 3/4}, {{1/8, 5/8}, {3/8, 7/8}}, {{{1/16, 9/16}, {5/16,
13/16}}, {{3/16, 11/16}, {7/16, 15/16}}}) where braces indicate allowable permu-
tations. Nested binary permutations of this form preserve the 1D stratification of the
radical-inverse sequence such that each dimension remains a (0,1)-sequence.

The Sobol permutations are not chosen randomly, but rather are carefully chosen
to reduce multidimensional discrepancy. The first two dimensions of the Sobol se-
quence are perfectly stratified, forming a (0,2)-sequence, but the higher-dimensional
sequence in general has ¢ > 0.

The permutations are applied using a matrix of direction numbers that is prede-
fined for each dimension. Conceptually, to compute a sample, the vector of binary
digits from the sample index is multiplied by the matrix (mod 2) to produce the sam-
ple value as a binary fraction. In practice, each non-zero bit from the sample index
is used to select the corresponding direction number, and these direction numbers
are simply XOR’d together to produce the sample value [Bratley and Fox 1988]. An
implementation is given in the supplemental materials.

2.3. Padding and Shuffling

Sampling using high-dimensional Sobol points can be problematic due to the £ num-
bers increasing as the dimensionality is increased. According to Dick and Nieder-
reiter [2008, Remark 4], the Sobol sequence with four dimensions has ¢ = 3, with
five dimensions ¢ = 5, and with six—ten dimensions ¢t = (8,11, 15,19, 23), respec-
tively. Owen [1998b] reported that advantageous convergence rates are only achieved
for sample counts of N > 2! which suggests, for example, that integrating with 4D

Sobol points may require on the order of 22

samples.

Instead of using a high-dimensional Sobol sequence, a low-dimensional sequence
can be used for the first few dimensions and the remaining dimensions can simply be
“padded” with uniform random samples [Spanier 1995]. Alternatively, Owen [1998a]
showed that better results can be obtained by padding with shuffled RQMC point
sets. Shuffling the order of points in each reused point set effectively decorrelates the
reused dimensions while preserving the properties within each set.

Shuffling a fixed, pregenerated point set is straightforward, but this would not
be suitable for progressive sampling. As an alternative to shuffling a fixed point set,
Laine and Karras [2011] used a hash function to progressively shuffle the sample or-
der of the base-two radical-inverse sequence for decorrelated reuse. As with the Sobol
permutations, the Laine-Karras hash preserves 1D stratification in each dimension;

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

however, unlike the Sobol permutations, the Laine-Karras hash achieves no multidi-
mensional stratification.

In Section 3.1 we analyze the Laine-Karras hash and show that it achieves a nested
uniform shuffle, recursively swapping complete subnets by permuting the digits of the
sample index, thus preserving the low-discrepancy properties of the sequence for all
sample counts. In Section 4 we show how to use the hash to shuffle the multidimen-
sional Sobol sequence.

2.4. Owen Scrambling

To fully randomize (¢,s)-sequences, Owen [1995] proposed applying a unique permu-
tation to each elementary interval. The set of all elementary intervals can be imag-
ined as a b-ary tree, as in Figure 5, with the most significant digit of a sample value
selecting a topmost interval in the tree, and each successive digit selecting a subinter-
val. Permuting a digit effectively rearranges the subintervals but does not change the
number of points in those or any other subintervals. Owen referred to this as nested
uniform scrambling, and this has come to be known simply as Owen scrambling.

Owen scrambling requires a large number of independent permutations (sb’* where
K digits are being permuted) which could require a prohibitive amount of memory.
Friedel and Keller [2002] implemented Owen scrambling for fixed-length point sets
in arbitrary base without requiring excessive memory or computation. The authors
first generated complete sets of unscrambled points, then sorted and permuted them
recursively by interval.

Avoiding the sequence length restriction and eliminating the memory requirement
entirely, Owen [2003] suggested the much simpler possibility of using a hash of the
interval’s address to compute permutations on-the-fly. Recomputing permutations on-
the-fly for each generated digit could be inefficient for large b, however this is not a
problem for us as we only need base two. While performing such a per-digit per-
mutation is straightforward, it still involves quite a few steps of computation. The
Laine-Karras hash by comparison permutes all the digits at once. We show in Sec-
tion 3.2 that a nested uniform scramble can be achieved using the Laine-Karras hash
if applied in a bit-reversed order.

2.5. Scrambling vs. Shuffling

It is important to distinguish between scrambling and shuffling. Scrambling refers
to randomizing the sample value whereas shuffling refers to reordering samples by
randomizing the sample index. While scrambling aims to improve the properties of
the sequence, shuffling is intended solely to decorrelate the ordering of samples for
padding without otherwise changing the properties of the sequence. Owen [1998a]
explained why padding with unshuffled points using independent scramblings (as sug-
gested by Kollig and Keller [2002]) cannot be expected to work well in practice; this is

http://jcgt.org

Journal of Computer Graphics Techniques

Practical Hash-based Owen Scrambling

Vol. 9, No. 4, 2020
http://jcgt.org

Shuffled Scrambled Shuffled & Scrambled
. VJ. v ~
. . . »~ . .
rl . R . \o“‘. . 'l .
f\ *
d "c‘,. ‘
o ; (.’\'
. * - 'lJ *
'.- . ‘ J\ ~ . +
. . g’ "“ N N W’ .
* ’\ N ’o : .
Py !‘ *
. -“‘ . “~

Figure 4. 128 radical-inverse points padded to 2D; the first 16 points are colored red with 1D
projections shown in the margins. Left: Shuffling effectively decorrelates the two dimensions
but adds no randomization, as exhibited by the regular spacing in the 1D projections. Mid-
dle: Scrambling adds randomization, visible in the jittered spacing in the 1D projections, but
fails to decorrelate the two dimensions. Right: Combining scrambling and shuffling achieves

randomization and decorrelation.

demonstrated in Figure 4. The figure also demonstrates that scrambling and shuffling
can be combined with complementary results.

2.6. Owen Scrambling Approximations

For efficient scrambling in arbitrary base, Matousek [1998] proposed various approxi-
mations to Owen scrambling in order to avoid the memory and computation required.

bit 31 T~

[I] [I]

bit 30 A A

[I I I] [I I I]

- NN AN
AL

I I
/\ I /I\ /\ I /'\
00 Random digit scrambling

I I T T 1 [T

Owen scrambling

Figure 5. In base two, each bit of a sample value’s binary fraction, starting with the most
significant bit, places the sample value into a particular sub-interval. Toggling a bit for all
samples swaps all pairs of sub-intervals corresponding to that bit; this is illustrated above for
random digit scrambling where bits 29 and 30 are toggled for all samples. Alternatively, if
a bit is toggled only for samples falling within a particular interval, then only the two subin-
tervals within that interval will be swapped; this is illustrated for Owen scrambling where an
arbitrary subset of intervals is swapped. Both scrambling methods preserve stratification as
the number of points in each interval is unchanged, but Owen scrambling achieves a more

complete randomization.

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

Sobol Sobol-RDS Sobol-Owen

Figure 6. The first 128 points of the 2D Sobol sequence along with two scramblings; the
first 16 points are colored red with 1D projections in the margins. Left: The Sobol points
are perfectly stratified but have regular spacing in 1D projections, and the points tend to
align on diagonals in 2D. Middle: Random digit scrambling offsets the 1D projections but
does not affect their regular spacing, and though mutated, the structure and alignment of 2D
points remain. Right: Owen scrambling jitters the points in 1D and 2D while preserving their

stratification.

Two notable approximations proposed by Matousek are nested linear scrambling,
where nested permutations of the form Ax; + C' mod b are used rather than fully
uniform ones, and random digit scrambling, where nested permutations are replaced
with positional ones, using an independent permutation per digit position rather than
per interval.

Kollig and Keller [2002] implemented random digit scrambling in base two us-
ing bitwise XOR, and this remains a widely used method for scrambling the Sobol
sequence. An illustration comparing Owen scrambling and random digit scrambling
is shown in Figure 5, and a sample point set is shown in Figure 6.

Owen [2003] proved (Prop. 3.1) that both random linear scrambling and random
digit scrambling are sufficient for unbiased integration. Owen also proved (Prop. 3.3)
that random linear scrambling achieves both the smooth-integrand convergence rate
and the square-integrable variance bound of nested uniform scrambling, but random
digit scrambling achieves neither.

2.7. Related Work

GriinschloB et al. [2012] performed image synthesis using a single low-discrepancy
sequence spread across the image plane, allocating a subinterval of the sequence to
each pixel. To allow parallel rendering, the authors devised an algorithm to efficiently
enumerate the samples within a given pixel. Using a single sequence for the entire
image achieves stratification across pixels rather than solely within each pixel, and
this can reduce the overall image error as seen in Figure 1. However, the sequence is
still subject to structured artifacts as shown in the figure.

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

Perrier et al. [2018] applied randomly selected, precomputed Owen-scrambling
subtrees to the Sobol sequence that were each optimized for 2D blue-noise quality
rather than using independent permutations per interval. For higher-dimensional sam-
pling, the authors applied their blue-noise scrambling to two or three select pairs of
dimensions, and applied ordinary Owen scrambling to remaining dimensions.

Christensen et al. [2018] generated fully randomized (0, 2)-sequences by brute-
force search while (optionally) optimizing for blue-noise properties. The authors ex-
tended the sequence to four dimensions by pairing 2D sequences and making greedy
swaps of strata pairs within the second sequence to obtain 4D stratification. For in-
dependent uses of the sequence, and to extend sequence length and dimensionality,
the authors randomly selected among precomputed realizations of the sequence, each
shuffled during construction for decorrelation. The shuffling is performed progres-
sively such that each prefix of samples with power-of-two length remains a complete
net.

Heitz et al. [2019] applied random digit scrambling to a precomputed Owen-
scrambled Sobol sequence, rearranging the seeds in an optimization step to achieve
a blue-noise distribution of error across the image plane. In addition to having fixed
sequence length and dimension, the authors used the same Owen scrambling for every
pixel to minimize table size. A hash-based implementation presumably would allow
the Owen scrambling to be varied per pixel (in place of the random digit scrambling),
in addition to eliminating the length and dimension limits.

3. Hash-based Owen Scrambling

Owen’s nested uniform scrambling is formulated as follows. Given the b-ary repre-
sentation of unscrambled sample value x = 0.aja2as...ag, the scrambled sample is
o(x) = 0.b1babs...by where bj = Ta, 4y, a;_,(aj) With T4, 4, . a;_, €ach being an
independently chosen uniform permutation of the set {0, 1,...,b — 1}. That is, for
each digit of the b-ary fraction, the digits to the left are used to select a permutation
to be applied to the digit. These left-most digits thus represent the “address” of the
interval containing the digit being scrambled.

A uniform digit permutation in base two is trivially achieved by XOR’ing the
given digit with a random bit value. Implementing a nested uniform permutation is
straightforward: for each bit, use a hash of the bits to the left (along with a unique
randomization seed) to generate the random bit value and XOR the random bit with
the bit from the sample value. The cost in a naive implementation is proportional
to the number of bits being permuted. However, Laine and Karras devised a more
efficient nested permutation which we will now consider.

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

uint32_t laine_karras_permutation(uint32_t x, uint32_t seed)
{
x += seed;
x "= x x 0x6c50b4d7cu;
x "= x x 0xb82fleb52u;
x "= x x 0xc7afe638u;
x "= x x 0x8d22f6ebu;

return x;

Listing 1. Laine-Karras permutation.

3.1. Laine-Karras Permutation

Laine and Karras [2011] proposed a particularly efficient nested uniform permutation
in base two, shown in Listing 1. Laine and Karras observed that when multiplying an
input value by an even constant, each input bit only affects bits to the left and thus
performs a nested hash. And because each multiplication result is used only to select
one of the two possible permutations of each bit (via the XOR operator), the result is
a nested uniform permutation.

Laine and Karras used fixed multipliers that they found to have good hashing
properties, resulting in a deterministic permutation. To add randomness, a provided
seed is added into the sample value before applying the permutation. When adding
the constant, in addition to each bit affecting bits to the left through arithmetic carry,
each bit also affects itself; however, this constant value added to each bit merely acts
to select an additional fixed permutation of the bit. Thus, adding the random constant
can also be viewed as a nested uniform permutation, and the composition of nested
uniform permutations is likewise a nested uniform permutation.

The first 16 samples of a Laine-Karras-permuted sequence are shown in Table 1.
In the third column of the table, we demonstrate that the Laine-Karras sequence is
a nested binary permutation composed with a random digit scrambling. We inter-
pret the permutation of = 0 as the random digit-scrambling constant, 0x71blc2ac.
XOR’ing this value with the entire column recovers the “unscrambled” permuted se-
quence which we can see conforms to the same allowable nested permutations as we
described in Section 2.2 for the Sobol sequence. As pointed out in their paper [Laine
and Karras 2011], the Laine-Karras hash replaces the Sobol direction numbers with
random permutations rather than ones that minimize multidimensional discrepancy.
However, the result is not an Owen scramble as the hash serves primarily to permute
the sample order, achieving only minimal randomization equivalent to random digit
scrambling; thus, it is more appropriate to refer to the Laine-Karras permutation as a
nested uniform shuffle.

10

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020

Practical Hash-based Owen Scrambling http://jcgt.org
radical-inverse Laine-Karras @ 71blc2ac
00000000 0) 71blc2ac 00000000)

80000000 (1/2) flblc2ac | 80000000 (1/2)
40000000 (1/4) | blblc2ac | 0000000 (3/4)
0000000 (3/4) 31blc2ac | 40000000 (1/4)
20000000 (1/8) diblc2ac | a0000000 (5/8)
0000000 (5/8) Slblc2ac | 20000000 (1/8)
60000000 (3/8) 11blc2ac | 60000000 (3/8)
0000000 (7/8) 91blc2ac | 0000000 (7/8)
10000000 (1/16) | clblc2ac | bO00000O (11/16)
90000000 (9/16) | 4lblc2ac | 30000000 (3/16)
50000000 (5/16) | Olblc2ac | 70000000 (7/16)
d0000000 (13/16) | 8lblc2ac | f0000000 (15/16)
30000000 (3/16) | alblc2ac | d0000000 (13/16)
b0000000 (11/16) | 21blc2ac | 50000000 (5/16)
70000000 (7/16) | elblc2ac | 90000000 (9/16)
0000000 (15/16) | 61blc2ac | 10000000 (1/16)

Table 1. The first 16 samples of the radical-inverse sequence and corresponding Laine-
Karras permutation. The first column is the input sample value, z, in binary fraction and
decimal forms. The middle column is laine_karras_permutation (x, 0x552553bc)
where 0x552553bc is an arbitrarily chosen seed. The third column shows values from the
middle column after XOR’ing with 0x71blc2ac (the permutation of x = 0), making it easier

to see that the Laine-Karras sequence is a nested binary permutation.

3.2. Nested Uniform Scrambling in Base Two

As previously described, Owen scrambling permutes each digit of the sample value
based on the digits of higher significance (i.e., ones to the left), whereas the Laine-
Karras hash permutes each digit based on digits of lower significance (i.e., ones to
the right). We observe therefore that if the Laine-Karras permutation is applied in
reverse, as shown in Listing 2, a nested uniform scramble results.

uint32_t nested_uniform_scramble (uint32_t x, uint32_t seed)

{

X = reverseBits (x);
x = laine_karras_permutation (x, seed);
X = reverseBits (x);

return x;

Listing 2. Nested uniform scrambling in base two.

11

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

4. Shuffled Scrambled Sobol Sampling

As demonstrated in Section 3.1, the Laine-Karras permutation achieves a nested uni-
form shuffle when applied to the sample values of the radical inverse sequence. To
adapt this to shuffling the multidimensional Sobol sequence we must apply it to the
sample index before any sample values are computed. To do so, we simply reverse
the bits before and after applying the permutation.

This (perhaps confusingly) results in exactly the same code as for nested uniform
scrambling shown in Listing 2. The critical distinction is that the function is applied
to the sample index rather than the sample value to achieve a nested uniform shuffle
rather than a nested uniform scramble.

We can easily verify that our shuffling approach is equivalent to that used by Laine
and Karras [2011, Figure 4]. In their code, the sample index is given as sampleId +
pixelId+samplesPerPixel. We first shuffle the given sample index using Listing 2
(with seed=surface1d) and then we reverse the bits of the shuffled index to compute
the corresponding radical inverse sample value. We note that this final reverseBits
cancels with the second reverseBits function in Listing 2; if these two calls are
eliminated, then the remaining code is identical to Laine and Karras’. The differ-
ence in our approach is that we can now apply the shuffling to sequences of arbitrary
dimension, and we can readily combine shuffling with scrambling.

Putting this all together, we perform shuffled scrambled Sobol sampling using
the code in Listing 3. We first apply the nested_uniform_scramble function from
Listing 2 to the sample index, achieving a nested uniform shuffle of the sample order-
ing. We then use the shuffled index to compute the corresponding 4D Sobol sample.
Finally, we apply nested_uniform_scramble again to each dimension, using a dif-
ferent seed in each dimension. The first 256 points generated using this code are
shown in Figure 7.

For padding to higher dimensions, one merely needs to supply a different seed
to each group of four dimensions. This effectively decorrelates each group of four
dimensions against all others while preserving the stratification within each group.

void shuffled_scrambled_sobol4d(uint32_t index, uint32_t seed,
uint32_t X[4])

index = nested_uniform_scramble (index, seed);
sobol4d (index, X);
for (int i = 0; 1 < 4; i++) {
X[1i] = nested_uniform_scramble (X[i], hash_combine (seed, 1i));

Listing 3. Shuffled scrambled Sobol sampling.

12

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020

Practical Hash-based Owen Scrambling http://jcgt.org
....I..".l. :: .’ 0...o‘ :' ..'..' . .‘. . ‘..:' ...0 o .. .:' :. .. '..sl
.o ® o 0% . Pe . .. o ...: K ° o .®
o« o O, fo 0 ‘e ' °® .-. . o % -.‘ AR ~') : .
U S c..o.. . o R IR AN .-.. es g0 te e
.:' -~ o ..'.:..- '.. ..‘.. o .'.: ...c..‘ L e :. .'. L . '..'o. U
!....:..‘. o~ o O:’......:'. . :.’. :‘c‘.. o ‘.. o..'.. o :.. . .°... o. ‘,'.:'.......'.
... °% - ..:. ot ...0. .o. 1 o° '.. "0 ~.. .Q. ':... ‘ .:. 'l ..0 ... ° ° :.... c.. ‘... .". :
.-.'.‘..'.. .- .' [P :: ..: .2 -. .‘ .o :. .: :. :. LI :. :..: o
‘co..: ®e .. I'...- .0.‘ . 'q'-.. '.- :‘ .0'..-..‘ ‘o .'c :'..- ¢ :..o...‘
...... . :... o. ...': .. - .’ .-... ... :-. ... o L. ‘-... ..c e, K o ...-
(0,1) 0,2) (1,2)
-. '.: o ‘.-. : . o* “"".. ‘e ° -.‘o o° ¢ oo° ..' o o -0-
. .. . :'. ',.-. . :'. .: o ::" :..'. ..%..:.-..‘. . ..'.-' ...0..0'..l.....: "c.
¢ °... : o 0 e ': o '.':‘ .'o :.' N ..': .: " .o...' e o. ."'.
-.' °° ..' . ..' o .- ° '..o et :c .c.o..:o. ¢ M ..c. :. .0. o'-
.:: .:c. LI * % ..- .'-.. R ..'- '..c.-: - oo o ...‘ L ... o oo o'.'.
° . :. '..'. .'-' .o'.. 1 :: .':.c. :' 'l. '0: :- ¢ .'- ... :.3: “ -:
:. : :. :, '. . ..".: .; 0.'..' '.:... . : ::. .:‘l:;.' '. :". o: 0: :..' ..O': :- .‘.: -
::. o .c. .0...' o :... .- '...-'.. L : ., e ... o LY o, 0...0. * o ..'0 o.‘
..: :-.: ‘.". :. :. .:.“:. ". '...: .-. .. -.-.' o, .:.0..0.
... e : o ® '... 0. %o .:'..-"0'-'. .o' S %2 '.. I ..' :
(0,3) (1,3) (2,3)

Figure 7. 256 4D points generated using Listing 3 with seed=12345 with all 2D projections
shown. Stratification can be observed in all projections, though higher discrepancy can be
observed in the higher dimensions.

5. Discussion

5.1. Benefits of Owen Scrambling

Improved rate of convergence. For smooth-enough functions, i.e., ones with bound-
ed mixed-partial derivatives, the expected RMSE for Owen-scrambled nets reduces to
O (N—3/%(log N)(*=1)/2) rather than O (N~*(log N')*~1) for QMC [Owen 1997b].
This is evidenced in the integrals of the gaussian and bilinear functions in Figure 2.

Owen offered an intuitive explanation of the improved convergence rate in the 1D
case [Owen 1997b, attributed to Fred Hickernell]. An unscrambled radical-inverse
net of N = b™ points has each data point at the lower end of its 1 /NN interval. Given
large enough NV and a “well-behaved” integrand, most intervals will have their largest
or smallest value at these points with no cancellation generally expected, and thus
the error is typically proportional to 1/N. Given that Owen-scrambled nets random-
ize samples independently within their intervals, there is a tendency towards error
cancellation with an accordingly lower convergence rate.

This explanation also provides a caution in that optimal convergence may only be
expected when sampling with complete nets (i.e., with N = "), and adding even one
more sample may add error proportional to 1/N’; this effect is illustrated in Figure 8.

13

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

10"

— Sobol'-Owen
-- N~-1
N~-1.5

10"

24 2° 2°
Figure 8. Closeup of convergence plot for gaussian function from Figure 2. The error is seen
to increase and decrease with sample count as full nets are reached. At powers of 2, the con-
vergence follows O(NN~1-%). However, adding just one more sample adds error proportional
to O(N~1). Additionally, the error reduces to a local minimum halfway between powers of
two, e.g, at 24 and 48 samples.

It is likely the smooth integrand condition is satisfied rarely in practice, but it
clearly can occur, for instance in computing unshadowed direct lighting from an area
light as in Figure 1(a). Also, if an integrand is smooth over part of the domain, one
would expect error cancellation at least within nets contained within that part. This
may not improve the convergence rate as the error for the non-smooth part may only
be proportional to 1/N (or worse), but it could still reduce the overall error. Alter-
nately, if the integrand is piecewise-smooth with parts falling on sub-interval bound-
aries, then one would expect error cancellation across the domain once a sufficient
sample count is reached.

Bounded error. For square-integrable functions with unbounded variation, unlike
QMC which can have unbounded variance, integrating with Owen-scrambled (0, m, s)-

min(s—1,m) \which is never more than

nets offers a variance bound of "WQ (b/(b—1))
e = 2.72 times greater than with independent sampling [Owen 1997a]. This is a qual-
ity that Owen has referred to as “do no harm,” suggesting that an Owen-scrambled

net is more robust against unfavorable integrands.

Avoiding structured artifacts 'When sampling a function at regular intervals such as
the 1D projections of Sobol-RDS sampling, aliasing can occur when the sample rate
is lower than frequencies contained within the function. This can manifest as phantom
low-frequencies in the rendered image, such as the artifacts in Figure 1(c) for Sobol-
RDS and (b) and (c) for Sobol-enum. Jittering the sample positions, such as with
Owen scrambling, avoids such aliasing.

14

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

5.2. On the Laine-Karras Hash

The Laine-Karras hash is a nested uniform permutation—the permutations are demon-
strably nested and are obviously uniform in the sense that the permutations for each
digit are randomly and equally chosen from the set of possible permutations (of which
there are only two possibilities for each bit). However, the “randomness” of the hash
is clearly affected by how many multiply-xor steps are included, and which particular
constants are used. This apparent contradiction comes from the fact that when we say
random we really mean pseudorandom, and how random this actually is can vary to a
large degree. Measuring randomness and hash quality is a complicated endeavor and
beyond the scope of this paper; as such, we simply include the Laine-Karras hash as-
is and rely on the testing and claims by the authors that the hash was chosen to have
good properties. For what it is worth, in our testing we have found the hash to work
well, with convergence comparable to the naive per-bit hash using a well-regarded
hash function, and we cannot justify making any changes to it.

5.3. Practical Use

Padding. As previously discussed, when performing integration with less than a few
thousand samples (which is typical for computer graphics), there may be little benefit
to using more than four dimensions, yet integrals often have many more dimensions;
e.g., multi-bounce path tracing can require hundreds. The question remains whether
there is merit to padding with the randomized Sobol sequence rather than using inde-
pendent pseudo-random sampling that is simpler to compute. One argument to do so
is that an integral may have low effective dimension where a select few dimensions
contribute to most of the variance, yet it may not be known which dimensions those
are. For instance, lens samples may dominate for out-of-focus depth-of-field, but may
be unimportant for in-focus regions; likewise, the time dimension may dominate for
a pixel encountering high motion blur, but may be unimportant for static or slow-
moving objects. Even dimensions deep along the path may dominate, for example, if
a path undergoes several bounces of smooth reflection before hitting a diffuse brightly
lit surface. In these cases, padding with low-discrepancy samples for all dimensions
ensures that the important ones will be sampled well when the other dimensions are
unimportant.

Use in a Path Tracer Each path will typically carry the sample index as well as a
random seed for deterministic sampling; the sample index remains constant for the
entire path. This seed should be varied per pixel and may have other data such as
the frame number mixed in, and a high-quality hash should be applied to the seed. A
convenient strategy for path tracing is to draw a single multi-dimensional sample per
bounce, and then advance the seed (e.g., using a random number generator) for the
next bounce. If more than four dimensions are needed per bounce, then the seed can
be advanced immediately to sample additional dimensions.

15

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

Potential Optimizations

e If a maximum sample count is known, then some of the Sobol direction num-
bers can be omitted. For example, only the first 16 directions are needed for
sequences up to 65536 samples. The direction numbers can also be easily vec-
torized.

e In Listing 3, a bit reversal of x occurs both before and after the call to sobol as
part of nested_uniform_scramble. These bit reversals can be eliminated by
flipping the matrix of direction numbers in both directions.

e The first Sobol dimension is the 1D radical-inverse sequence and can be com-
puted as a special case by bit reversal rather than using direction numbers.

e Some architectures have an intrinsic instruction for bit reversal, e.g., _ brev in
CUDA.

5.4. Extension to Arbitrary Base

Having arbitrary base support would allow scrambling of the popular Halton sequence
that uses a different prime base in every dimension. However, it must be pointed out
that the beneficial properties of Owen scrambling, such as improved convergence rate
and strict error bound, rely on complete nets which is impossible with the Halton se-
quence given that each dimension reaches a complete net at a different sample count.
For unbiased integration and variance estimation, random-digit scrambling is already
sufficient, and state-of-the-art deterministic scramblings [Faure and Lemieux 2009]
have been found to outperform randomly chosen ones for the Halton sequence.

An additional application of arbitrary base support would be to scramble so-called
(0, s)-sequences which have the optimal ¢ = 0 property and are constructed in base
b > s[Faure 1982; Faure 2001]. The beneficial properties of Owen scrambling would
now be applicable for complete nets.

To sample with complete nets of size ", b must necessarily remain small. For
instance, complete nets for b = 5 permit sample counts of 5, 25, 125, 625, etc., and
these jumps may already be impractically large for progressive rendering. However,
there may still be a (reduced) benefit as long as complete sub-nets are used, e.g., using
multiples of 5 up to 25, multiples of 25 up to 125, multiples of 125 up to 625, etc.

Application of hash-based Owen scrambling in arbitrary bases is straightforward;
the main challenge is not in computing the hash but rather in computing uniform per-
mutations efficiently on-the-fly. For small-enough bases, the set of possible permuta-
tions can simply be pretabulated. For instance, the set of all base five permutations re-
quires only 5!-5 = 600 bytes; this would already permit scrambling a (0,5)-sequence.
However, bases b = 9 are likely impractical to pretabulate, in which case on-the-fly
permutations must be used.

16

http://jcgt.org

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

On-the-fly uniform permutations would likely by impractical for large b. How-
ever, as mentioned in Section 2.6, nested linear scrambling provides all the benefits
of nested uniform scrambling without the overhead of computing full uniform permu-
tations. Instead, permutations of the form Az; + C' mod b are used, with A and C
chosen from the sets {1,2,...,b—1} and {0, 1, ..., b— 1}, respectively; these constants
can be computed using a hash of the interval’s address and digit position. Though the
per-digit cost may be significant, the number of digits that need to be scrambled is
likely small, especially for higher bases. It is unknown to the author whether it is pos-
sible to scramble multiple digits at once in an arbitrary base as with the Laine-Karras
hash.

6. Conclusion

In this paper, we have presented an efficient implementation of hash-based Owen-
scrambling for Sobol sampling that also performs nested uniform shuffling to enable
multidimensional padding, and we have discussed various practical considerations for
its use. A complete implementation is given in the supplemental materials. A point vi-
sualizer is also provided in the supplemental materials, along with an implementation
of the Owen-scrambled Faure (0,5) sequence.

Acknowledgments

I would like to thank Per Christensen, Andrew Kensler, and Thomas Miiller for their helpful
insights, and especially Per for encouraging me to write this paper. I would also like to the
thank the anonymous reviewers for their many corrections and suggestions.

Supplemental Materials

Supplemental materials are available at http://jcgt.org/published/0009/04/
01/suppl.zip.

References

BRATLEY, P., AND Fox, B. L. 1988. Algorithm 659: Implementing Sobol’s quasirandom
sequence generator. ACM Transactions on Mathematical Software 14, 1 (Mar.), 88—100.
URL: http://doi.acm.org/10.1145/42288.214372. 5

CHRISTENSEN, P., KENSLER, A., AND KILPATRICK, C. 2018. Progressive Multi-
Jittered sample sequences. Computer Graphics Forum 37, 4, 21-33. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13472.3,9

DICK, J., AND NIEDERREITER, H. 2008. On the exact t-value of Niederreiter and Sobol’
sequences. Journal of Complexity 24, 5-6 (Oct.), 572-581. URL: http://dx.doi.
0org/10.1016/3.3c0.2008.05.004. 5

17

http://jcgt.org
http://jcgt.org/published/0009/04/01/suppl.zip
http://jcgt.org/published/0009/04/01/suppl.zip
http://doi.acm.org/10.1145/42288.214372
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13472
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13472
http://dx.doi.org/10.1016/j.jco.2008.05.004
http://dx.doi.org/10.1016/j.jco.2008.05.004

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

FAURE, H., AND LEMIEUX, C. 2009. Generalized Halton sequences in 2008: A comparative
study. ACM Transactions on Modeling and Computer Simulation 19,4 (Nov.), 15:1-15:31.
URL: http://doi.acm.org/10.1145/1596519.1596520. 16

FAURE, H. 1982. Discrépance de suites associées a un systeéme de numération (en dimen-
sion 8). Acta Arithmetica 41, 4, 337-351. URL: http://eudml.org/doc/205851.
16

FAURE, H. 2001. Variations on (0,s)-sequences. Journal of Complexity 17, 4,
741-753. URL: http://www.sciencedirect.com/science/article/pii/
S0885064X01905904. 16

FRIEDEL, 1., AND KELLER, A. 2002. Fast generation of randomized low-discrepancy point
sets. In Monte Carlo and Quasi-Monte Carlo Methods 2000, Springer, Berlin,Heidelberg,
Germany, K.-T. Fang, H. Niederreiter, and F. J. Hickernell, Eds., 257-273. URL: https:
//doi.org/10.1007/978-3-642-56046-0_17.6

GRUNSCHLOSS, L., RAAB, M., AND KELLER, A. 2012. Enumerating quasi-monte carlo
point sequences in elementary intervals. In Monte Carlo and Quasi-Monte Carlo Meth-
ods 2010, Springer, Berlin, Heidelberg, Germany, L. Plaskota and H. WoZniakowski,
Eds., 399-408. URL: https://link.springer.com/chapter/10.1007/
978-3-642-27440-4_21. 8

HEITZ, E., BELCOUR, L., OSTROMOUKHOV, V., COEURJOLLY, D., AND IEHL, J.-C. 2019.
A low-discrepancy sampler that distributes monte carlo errors as a blue noise in screen
space. In ACM SIGGRAPH 2019 Talks, Association for Computing Machinery, New
York, NY, USA, SIGGRAPH 19. URL: https://doi.org/10.1145/3306307.
3328191.9

KELLER, A. 1995. A Quasi-Monte Carlo algorithm for the global illumination prob-
lem in the radiosity setting. In Monte Carlo and Quasi-Monte Carlo Methods in Sci-
entific Computing, Springer, Berlin, Heidelberg, Germany, H. Niederreiter and P. J.-
S. Shiue, Eds., 239-251. URL: https://link.springer.com/chapter/10.
1007/978-1-4612-2552-2_15. 2

KELLER, A. 2006. Myths of computer graphics. In Monte Carlo and Quasi-Monte
Carlo Methods 2004, Springer, Berlin, Heidelberg, Germany, H. Niederreiter and D. Ta-
lay, Eds., 217-243. URL: https://link.springer.com/chapter/10.1007/
3-540-31186-6_14.2

KELLER, A. 2013. Quasi-Monte Carlo image synthesis in a nutshell. In Monte Carlo
and Quasi-Monte Carlo Methods 2012, Springer, Berlin, Heidelberg, Germany, J. Dick,
F. Kuo, G. Peters, and I. Sloan, Eds., 203-238. URL: https://link.springer.
com/chapter/10.1007/978-3-642-41095-6_8. 2

KoLLig, T., AND KELLER, A. 2002. Efficient multidimensional sampling. Computer
Graphics Forum 21, 3, 557-563. URL: https://onlinelibrary.wiley.com/
doi/abs/10.1111/1467-8659.00706. 6,8

LAINE, S., AND KARRAS, T. 2011. Stratified sampling for stochastic transparency.
Computer Graphics Forum 30, 4, 1197-1204. URL: https://diglib.eg.org/
handle/10.1111/v30i4ppl197-1204. 4,5,10,12

18

http://jcgt.org
http://doi.acm.org/10.1145/1596519.1596520
http://eudml.org/doc/205851
http://www.sciencedirect.com/science/article/pii/S0885064X01905904
http://www.sciencedirect.com/science/article/pii/S0885064X01905904
https://doi.org/10.1007/978-3-642-56046-0_17
https://doi.org/10.1007/978-3-642-56046-0_17
https://link.springer.com/chapter/10.1007/978-3-642-27440-4_21
https://link.springer.com/chapter/10.1007/978-3-642-27440-4_21
https://doi.org/10.1145/3306307.3328191
https://doi.org/10.1145/3306307.3328191
https://link.springer.com/chapter/10.1007/978-1-4612-2552-2_15
https://link.springer.com/chapter/10.1007/978-1-4612-2552-2_15
https://link.springer.com/chapter/10.1007/3-540-31186-6_14
https://link.springer.com/chapter/10.1007/3-540-31186-6_14
https://link.springer.com/chapter/10.1007/978-3-642-41095-6_8
https://link.springer.com/chapter/10.1007/978-3-642-41095-6_8
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00706
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-8659.00706
https://diglib.eg.org/handle/10.1111/v30i4pp1197-1204
https://diglib.eg.org/handle/10.1111/v30i4pp1197-1204

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

L’ECUYER, P., AND LEMIEUX, C. 2005. Recent Advances in Randomized Quasi-Monte
Carlo Methods. Springer US, Boston, MA, 419-474. URL: https://doi.org/10.
1007/0-306-48102-2_20.2

MATOUSEK, J. 1998. On the La-discrepancy for anchored boxes. Journal of Complexity 14,
4 (Dec.), 527-556. URL: http://dx.doi.org/10.1006/jcom.1998.0489. 2,
7

NIEDERREITER, H. 1987. Point sets and sequences with small discrepancy. Monatshefte fiir
Mathematik 104, 4, 273-337. URL: https://doi.org/10.1007/BF01294651. 4

OWEN, A. B. 1995. Randomly permuted (t,m,s)-nets and (t, s)-sequences. In Monte Carlo
and Quasi-Monte Carlo Methods in Scientific Computing, Springer, Berlin, Heidelberg,
Germany, H. Niederreiter and P. J.-S. Shiue, Eds., 299-317. URL: https://doi.org/
10.1007/978-1-4612-2552-2_19.2,6

OWEN, A. B. 1997. Monte Carlo variance of scrambled net quadrature. SIAM Jour-
nal on Numerical Analysis 34, 5, 1884-1910. URL: https://doi.org/10.1137/
S0036142994277468. 14

OWEN, A. B. 1997. Scrambled net variance for integrals of smooth functions. The Annals
of Statistics 25, 4, 1541-1562. URL: http://www. jstor.org/stable/2959062.
13

OWEN, A. B. 1998. Latin Supercube Sampling for very high-dimensional simulations. ACM
Transactions on Modeling and Computer Simulation 8, 1 (Jan.), 71-102. URL: http:
//doi.acm.org/10.1145/272991.273010.5,6

OWEN, A. B. 1998. Scrambling Sobol’and Niederreiter—Xing points. Journal of complexity
14, 4,466-489. URL: https://doi.org/10.1006/jcom.1998.0487. 5

OWEN, A. B. 2003. Variance with alternative scramblings of digital nets. ACM Transactions
on Modeling and Computer Simulation. 13, 4 (Oct.), 363-378. URL: http://doi.
acm.org/10.1145/945511.945518. 6,8

PERRIER, H., COEURJOLLY, D., XIE, F., PHARR, M., HANRAHAN, P., AND OSTRO-
MOUKHOV, V. 2018. Sequences with low-discrepancy blue-noise 2-D projections. Com-
puter Graphics Forum 37, 2, 339-353. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/cgf.13366.9

SosBoL’, I. M. 1967. On the distribution of points in a cube and the approximate evaluation
of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7, 4, 784-802.
URL: https://doi.org/10.1016/0041-5553(67)90144-9.5

SPANIER, J. 1995. Quasi-Monte Carlo methods for particle transport prob-
lems. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Comput-
ing, Springer, Berlin,Heidelberg, Germany, H. Niederreiter and P. J.-S. Shiue,
Eds., 121-148. URL: https://link.springer.com/chapter/10.1007/
978-1-4612-2552-2_6.5

19

http://jcgt.org
https://doi.org/10.1007/0-306-48102-2_20
https://doi.org/10.1007/0-306-48102-2_20
http://dx.doi.org/10.1006/jcom.1998.0489
https://doi.org/10.1007/BF01294651
https://doi.org/10.1007/978-1-4612-2552-2_19
https://doi.org/10.1007/978-1-4612-2552-2_19
https://doi.org/10.1137/S0036142994277468
https://doi.org/10.1137/S0036142994277468
http://www.jstor.org/stable/2959062
http://doi.acm.org/10.1145/272991.273010
http://doi.acm.org/10.1145/272991.273010
https://doi.org/10.1006/jcom.1998.0487
http://doi.acm.org/10.1145/945511.945518
http://doi.acm.org/10.1145/945511.945518
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13366
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13366
https://doi.org/10.1016/0041-5553(67)90144-9
https://link.springer.com/chapter/10.1007/978-1-4612-2552-2_6
https://link.springer.com/chapter/10.1007/978-1-4612-2552-2_6

Journal of Computer Graphics Techniques Vol. 9, No. 4, 2020
Practical Hash-based Owen Scrambling http://jcgt.org

Author Contact Information
Brent Burley

Walt Disney Animation Studios
500 S. Buena Vista St.

Burbank, CA 91521

brent.burley @disneyanimation.com

Brent Burley, Practical Hash-based Owen Scrambling, Journal of Computer Graphics Tech-
niques (JCGT), vol. 9, no. 4, 1-20, 2020
http://jcgt.org/published/0009/04/01/

Received: 2020-04-02
Recommended: 2020-11-11 Corresponding Editor: Matt Pharr
Published: 2020-12-29 Editor-in-Chief: Marc Olano

(© 2020 Brent Burley (the Authors).

The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

20

http://jcgt.org
mailto:brent.burley@disneyanimation.com
http://jcgt.org/published/0009/04/01/
http://creativecommons.org/licenses/by-nd/3.0/

