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Figure 1. Several graphics applications that require intensive spatial search operations can
be significantly accelerated by our method. Left: global illumination via progressive photon
mapping. Photons are highlighted in green. Right: local point-cloud registration of partial
surface scans shown as red and green points.

Abstract

Spatial queries to infer information from the neighborhood of a set of points are fre-
quently performed in rendering and geometry-processing algorithms. Traditionally,
these are accomplished using radius and k-nearest neighbors search operations, which
utilize kd-trees and other specialized spatial data structures that fall short of deliver-
ing high performance. Recently, advances in ray-tracing performance, with respect
to both acceleration data-structure construction and ray-traversal times, have resulted
in a wide adoption of the ray-tracing paradigm for graphics-related tasks that spread
beyond typical image synthesis. In this work, we propose an alternative formulation
of the radius-search operation that maps the problem to the ray-tracing paradigm in
order to take advantage of the available GPU-accelerated solutions for it. We demon-
strate the performance gain relative to traditional spatial search methods, especially
on dynamically updated sample sets, using two representative applications: geometry
processing of point-wise operations on scanned point clouds and global illumination
via progressive photon mapping.
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1. Introduction

Many rendering and geometry-processing algorithms rely on spatial neighborhood
queries on large point sets. Image-synthesis algorithms, like photon-mapping vari-
ants and many-light or radiance-caching methods are typical examples. In the context
of geometry processing, point-cloud registration and local feature extraction are also
prominent intensive tasks that operate on spatial neighborhoods or require the dis-
covery of correspondence between nearest points. If performed frequently, all these
operations can introduce a significant computational overhead, an issue that needs to
be addressed in order to allow for fast performance and scalability of the intended
application.

Most neighborhood queries utilize spatial hierarchies, such as kd-trees or regu-
lar structures (uniform or hash grids), to hierarchically subdivide sample points and
accelerate query performance. Building high-quality data structures directly trans-
lates to higher query performance but generally impacts construction time negatively.
Needless to say, from a development standpoint, the process of implementing an op-
timized data structure can become challenging.

Motivated by the importance of this problem, in this paper we demonstrate how to
leverage a highly-optimized existing ray-tracing framework in order to efficiently map
the radius-search task to ray traversal. Central to our approach is the idea of relating
the query radius with samples and, as a result, treating them as regular primitives of
known bounds instead of simple points. This allows us to store the point samples in an
optimized data structure for ray tracing, available right off the shelf from the respec-
tive API and map the radius-search problem to the ray-tracing paradigm, relying on
optimized and hardware-accelerated APIs to perform the queries fast and effortlessly.
We demonstrate the significant performance boost and simplicity of such a generic ap-
proach through the implementation of an NVIDIA OptiX-based neighborhood-search
mechanism and its application to various representative application scenarios, such as
progressive photon mapping, point-cloud correspondence, and point-cloud normal es-
timation.

2. Related Work

Early literature reveals the need for efficient radius-search queries in image-synthesis
tasks, such as irradiance caching [Ward et al. 1988], but perhaps the most representa-
tive family of image-synthesis methods that relies heavily on the efficiency of radius
search, is photon mapping [Jensen 1996] and its variants. The need for exploring
neighbor samples was also demonstrated in the context of bidirectional path-tracing
methods [Georgiev et al. 2012] and virtual point lights [Sriwasansak et al. 2018].
More recently, nearest-neighbors searches have also been used to derive a selection
probability for a candidate light during next event estimation [Vorba et al. 2019].
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In the context of geometry processing and analysis, many local geometric descrip-
tors, i.e., scalar or multi-dimensional quantities that characterize the geometric shape
of a (sampled) neighborhood on a 3D surface or volume, require the extraction of ei-
ther the k-nearest samples or the samples within a specific sphere radius that defines
the scale of the operator. Since the family of actively used local descriptors is quite
large, we refer the interested reader to the Point Cloud Library, where implementa-
tions of the most typical geometric descriptors and local feature-extraction methods
on point clouds are provided [Rusu and Cousins 2011]. Another common task that
heavily uses 1-nearest neighborhood search is local point-cloud registration, or the
Iterative Closest Point algorithm [Besl and McKay 1992] and its derivative methods.

Below we briefly summarize the typical generic data structures used for the above
tasks and present recent work on how ray tracing has been employed to assist in them.

2.1. Spatial Data Structures

The most prominent hierarchical data structure for nearest-neighbors searches is the
kd-tree [Bentley 1975], which is extensively used in a variety of global-illumination
tasks, especially those related to the photon-tracing scheme [Jensen 1996]. Kd-trees
are also frequently employed in geometry-processing and recognition tasks, including
the inference of local features [Hoppe et al. 1992] and point-cloud alignment [Zhang
1994]. Additionally, the performance of the hierarchy construction has been greatly
improved by adapting it to a GPU architecture [Zhou et al. 2008] as well as its fi-
nal tree quality based on the voxel volume heuristic [Wald et al. 2004]. Finally, the
octree [Meagher 1982] and its many GPU implementations have also been exploited
for nearest-neighbors searches in illumination tasks [Ward et al. 1988; Křivánek et al.
2008; Wang et al. 2019].

Attempts to optimize radius and nearest-neighbors searches were also demon-
strated with grid-based data structures. Hash maps [Ma and McCool 2002] exploit
a locality-sensitive hashing scheme to approximate nearest neighbors in a coherent
and parallel manner. Despite the benefits, this approach suffers from efficiency issues
when samples are not uniformly distributed, which is the typical case.

2.2. Hardware-accelerated Ray Tracing

Ray tracing on the GPU typically employs some specific type of a bounding volume
hierarchy (BVH) as a ray-geometry acceleration data structure (ADS). With the in-
creased popularity of ray tracing, several high-performance BVH data structures have
been proposed that benefit from the GPU’s parallel architecture [Lauterbach et al.
2009; Karras and Aila 2013; Domingues and Pedrini 2015]. In our case, this is par-
ticularly beneficial for many methods that utilize spatial neighborhood queries, since
a BVH can have both a fast construction time and a competitive query performance,
making it suitable for dynamic updates of the queried sample set. Even thought spatial
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grids, like hash-grids, perform well on construction, the query performance can dete-
riorate in cases with uneven distribution of samples, which is rather common. On the
other hand, while kd-trees solve this problem, they lack efficient construction algo-
rithms for GPUs, whereas BVHs have been successful in balancing the performance
of both tasks.

2.3. Applying Ray Tracing to Other Tasks

Recent enhancements in ray tracing, even at the hardware level, inspired researchers
to creatively map problems to the ray-traversal paradigm, in order to exploit the fast
performance and optimized emerging implementations.

First of all, treating point samples as primitives with volume in hierarchical data
structures is not new. Fabianowksi et al. [2009] stored and queried photons, extended
by an estimated splat radius, in a linear bounding-volume hierarchy [Lauterbach et al.
2009]. Here we generalize and abstract this idea further.

In the same spirit as in our work, Wald et al. [2019] exploit the OptiX frame-
work to perform point-in-tetrahedron queries for volume visualization of unstruc-
tured shapes. Recently, Knoll et al. [2019] demonstrated how to exploit the OptiX
API and hardware ray-tracing cores to render large particle data using marching rays
that progressively accumulate intersected particles that are stored as generic primi-
tives in a BVH. Concurrently and independently from our work, Zellmann [2020]
proposed an efficient implementation of the spring-embedders algorithm, an itera-
tive graph-drawing technique mapped to the ray-tracing paradigm. Similar to the
previous methods, the OptiX framework is exploited for radius-search queries in the
two-dimensional domain for all the vertices of a graph.

In this work we focus on solving spatial queries as a general-purpose task in a
three-dimensional domain and show how this can be a competitive alternative to a
regular GPU-accelerated kd-tree, both in terms of implementation convenience and
overall performance.

3. Radius Search using Ray Tracing

3.1. Radius Search Formulation

A radius-search operation is defined by a set of points S = {s1, s2, . . .} ⊆ R3 that
represent the sample space and a set of points Q = {q1,q2, . . .} ⊆ R3 that encom-
passes the queries to be performed. For every qi ∈ Q, the task is to find the subset
of samples Sqi that resides within a maximum search radius ri ∈ R, according to an
indicator function:

Iq(s) =

{
1, d(s,q) ≤ r,

0, otherwise,
(1)
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Figure 2. The forward and inverse radius-search process. The sample in query point-radius
formulation (left) can be mapped to an inverse spatial query (middle), followed by a sample
rejection step (right).

where d(s,q) is a distance function. Typically, this is the `2 norm. From Equation (1)
and the symmetry property of d(s,q), the problem can be equivalently defined as
locating for every sj ∈ S all query points Qsj ⊆ Q according to the following
indicator function:

Is(q) =

{
1, d(s,q) ≤ r̃,

0, otherwise.
(2)

In simple terms, the query can be inverted by assigning a sufficiently large radius
r̃ = max

qi∈Q
(ri) for each sample sj . A subsequent rejection step is then performed

to compute Sqi from Qsj by ensuring that the original search radius is satisfied:
d(sj ,qi) ≤ ri, when qi ∈ Qsj . A simple example of the inverse-mapping process is
illustrated in Figure 2. Obviously, if the search radius is constant for all queries, we
can set r̃ = ri, omitting the last check and greatly simplifying the query.

The above transformation of a gathering operation into an assignment one, has
been also used in the case of photon mapping [Stürzlinger and Bastos 1997], where
instead of determining the irradiance by gathering photons within a radius ri around a
camera ray-hit point qi, a photon-splatting operation assigns a photon s to hit points
within a splat radius r̃.

In the same spirit as in the work of [Fabianowski and Dingliana 2009], here we
exploit the inverse-search procedure in order to embed the set of samples S as points
with radius r̃ in a fast spatial-acceleration structure, but we further take advantage of
the hardware-accelerated ray-tracing mechanism to evaluate Equation (2). The partic-
ular problem re-formulation enables us to treat samples as primitives and, therefore,
exploit existing BVH builders to store samples and accelerate queries (Sections 3.2
and 3.3) as well as explore different cost models that optimize them.

Typically, the final tree quality in terms of traversal performance is quantified
using the surface area heuristic [MacDonald and Booth 1990] (SAH). On the other
hand, a reasonable and often used criterion for spatial queries is the minimization of
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the volume heuristic (VH), as we are interested in a point-in-volume probability mea-
sure according to our formulation in Section 3.1. In order for a BVH to be consistently
efficient for spatial queries, we must guarantee that a structure that is optimized ac-
cording to the SAH cost function also bounds the total volume heuristic cost. This
turns out to be true, and an elementary proof can be found in the Appendix. Simply
put, by minimizing the SAH, we always implicitly minimize the VH, meaning that
by exploiting a fast-built SAH-based BVH, query performance does not fall short.
Obviously, SAH is only an upper bound and therefore, a tree optimized with the VH
can perform better, in theory.

Internal structure and indexing mechanics of trees built by modern BVH algo-
rithms have some additional beneficial characteristics, aside from the parallel con-
struction. First, the spatial coherence near the leaves offers infrequent tree-level
changes on the lower tree levels during traversal. Second, since the input samples
have relatively small bound extents, defects arising from node overlap during node
splitting are less frequent, especially when the radius takes relatively small values
and is progressively reduced, as is the case in progressive variants of photon map-
ping [Hachisuka et al. 2008]. Finally, an often incorrect assumption in the applica-
tion of the SAH cost function, which requires that rays march unoccluded through
the scene before hitting the target (internal) bounding volume, is actually true in our
problem, which yields a more realistic and predictable performance.

In the following sections, given a set of query points qi, we explain how to identify
either all samples, or only the k-nearest ones that reside within a query radius ri, using
an off-the-shelf ray-traversal framework.

3.2. Radius Search via Ray Traversal

Constructing and traversing the acceleration data structure is a two-step process. First,
an axis-aligned bounding box (AABB) is constructed for every sample sj based on r̃

and forwarded for a regular BVH tree construction. Second, for each query qi, a ray is
defined with origin at qi and an infinitesimal ray extent. For implementation purposes,
we provide an arbitrary non-zero ray-direction vector #»v , since only the ray origin is
required. A radius-search operation can then be directly mapped to an “intersection”
ray-tracing event, and it is completed in a single ray-traversal invocation through ray-
bounds intersection between the tree nodes and the ray. Since sample AABBs that are
potentially within range of ri must enclose it, by definition of our problem, the ray
will eventually reach the leaves and correctly classify potential in-radius samples sj
according to d(sj ,qi). We summarize this method in Algorithm 1. Assuming object-
based splits as well as sequential traversal, unique primitive records are guaranteed to
be retrieved and, therefore, no additional modifications are required.

An alternative valid approach to the problem would be to store every query qi and
its associated search radii ri as primitives in the BVH, instead. Rays constructed with
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each one of the sample positions as origin would then be used to determine to which
query points the samples contribute. However, this would require a BVH query for
every sample, followed by an atomic update of the query’s list of results, an overhead
that is clearly avoided in the previous approach. GPU-accelerated BVH-traversal im-
plementations are ray-parallel, with the traversal itself being sequential, which favors
query-“gathering” operations, such as the one proposed here. On the other hand, par-
allel sample traversals attempting to concurrently update multiple query-result lists
are inefficient.

Algorithm 1: Radius Search using BVH.
Input: Queries Q = {qi}, Samples S = {sj}.
Output: Search set Sqi ⊆ S, ∀qi ∈ Q.
begin

r̃ ← max
qi∈Q

(ri); #»v ← (eps, eps, eps); {Sqi ← ∅};

bvh← BuildBVH(S, r̃);
forall qi ∈ Q do

ray ← (qi,
#»v , 0, eps); . (origin,direction, tmin, tmax)

RayTrace(bvh, ray, Sqi , Intersect);
end
return {Sqi};

end

Function BuildBVH(S, r):
bvh← EmptyBVH();
forall s ∈ S do

aabb ← (s− r · 1T , s+ r · 1T );
bvh.AddElement(s, aabb);

end
return bvh;

end

Function Intersect(s, ray, Sqi):
(o,d, tmin, tmax)← ray;
if ||s− o|| < ri then

Sqi ← Sqi ∪ s;
end

end
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3.3. Truncated k-nn Search via Ray Traversal

In the same spirit, we can exploit a BVH containing samples sj , each associated with
a bound of radius r̃, for k-nearest-neighbors searches with a truncation distance r̃,
beyond which all queried samples are rejected. Although this truncation comes out of
necessity rather than choice, since r̃ affects the BVH construction and query perfor-
mance and cannot be infinite, many practical algorithms already employ a truncation
strategy to reject outliers and boost convergence rate. A typical example is the widely-
used Iterative Closest Point alignment method, which frequently employs distance-
based nearest-point culling for convergence speed and outlier rejection [Rusinkiewicz
and Levoy 2001]. Since every sample is scanned over the predefined radius, as we al-
ready described in Section 3.2, an internal structure per query point of maximum size
k can be maintained and we can track the k-nearest samples, effectively collecting the
appropriate samples.

4. Evaluation

We assess the efficiency of the proposed radius-search method using the publicly
available OptiX [Parker et al. 2010] ray-tracing API (version 7.2), on an NVIDIA
GeForce RTX 2080 Ti graphics card with 11GB video memory and CUDA ver-
sion 10.1.

#define FLT_EPSILON 1.e-16f

extern "C" __global__ void __raygen__radSearch(void) {

const uint3 index = optixGetLaunchIndex();

const query_t & query = getQuery(index);

const float3 dir = make_float3(FLT_EPSILON, FLT_EPSILON,

FLT_EPSILON);

const float tmin = 0.f;

const float tmax = FLT_EPSILON;

payload_t payload;

payload.query = query;

optixTrace(ADSHandle, query.pos, dir, tmin, tmax,

0.f, OptixVisibilityMask(1),

OPTIX_RAY_FLAG_DISABLE_CLOSESTHIT |

OPTIX_RAY_FLAG_DISABLE_ANYHIT,

0, 1, 0, payload);

}

Listing 1. OptiX program that invokes the radius-search process of each query.
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extern "C" __global__ void __miss_radSearch(void) {/*Empty*/}

extern "C" __global__ void __closesthit__radSearch(void) {/*Empty*/}

extern "C" __global__ void __anyhit__radSearch(void) {/*Empty*/}

extern "C" __global__ void __intersection__radSearch(void) {

query_t & query = payload.query;

const uint32_t primIndex = optixGetPrimitiveIndex();

const sample_t & sample = getSample(primIndex);

const payload_t & payload = getPayload();

const float3 & ray_origin = optixGetWorldRayOrigin();

const float3 diff = sample.pos - ray_origin;

const float t = dot(diff, diff);

if(t < payload.query.radius * payload.query.radius) {

#ifdef TRUNC_KNN // See Section 3.3

if (t < payload.maxDistElem) {

// Cache the current sample into k-closest array

replaceFurthestElem(payload, query);

// Find the element with the maximum distance

// and record its index

recordFurthestElem(payload, query);

}

#else // Radius search, Section 3.2

// Process sample within query radius...

#endif

}

}

Listing 2. OptiX programs that issue query-sample intersections and record them.

As described in Section 3.2, we calculate the AABB for each sample, based on
the input-radius parameter. These samples are then used to construct an OptiX ac-
celeration data structure for which we enable compaction and fast-trace flags. Query
points can then index it through the ray-generation program shown in Listing 1. In
order to apply radius and truncated k-nn search as described in Section 3.2 and Sec-
tion 3.3, only the intersection program is required. The latter will both validate and
cache potential intersections between query and sample points effectively omitting
any additional callable programs (see Listing 2). This is accomplished by disabling
the closest and any-hit programs through the OptiX trace function during the ray-
generation phase. The source code of our OptiX-based implementation can be found
in the supplemental material 5. It should be noted that despite the API-specific flags
used in our specific implementation, the process is generic enough to be applied to
any other ray-tracing API, as long as custom primitive AABBs can be computed for
the ADS construction stage and the intersection callable is a user-modifiable function.
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We further evaluate our approach with the publicly available GPU-accelerated
FLANN kd-tree [Muja and Lowe 2009], where we use the default hyper-parameters
for each radius-search invocation, unless otherwise stated. In Section 4.1, we evalu-
ate both frameworks in two distinct configurations of randomly generated point sets.
Next, in Section 4.2, we evaluate the performance of our method in two common geo-
metric operations that require k-nearest-neighbors searches. Finally, in Section 4.3 we
validate the performance of our radius-search approach in progressive photon map-
ping [Hachisuka et al. 2008].

To level the ground for the comparison as much as possible, we perform the fol-
lowing steps: (1) In order to closely replicate the caching strategy of FLANN, we also
use custom buffers storing per-query result sets for sample indices as well as distances
for which we apply truncated k-nn as described in Section 3.3 and Listing 2; (2) we
disable FLANN heap usage as well as the sorting operation of the resulting buffer.

4.1. Generic Radius-Search Evaluation

In this section, we measure the efficiency of radius search using the OptiX BVH and
the FLANN kd-tree for storing and querying sample points under two generic configu-
rations that build the corresponding hierarchy according to (1) a uniform distribution
and (2) a Gaussian distribution with eight spherical modes. These two configura-
tions serve as a qualitative baseline for both data structures. Typically, uniformly
distributed samples will result in balanced trees which, in turn, greatly improve load
balance and tree-search overhead of query invocations. On the other hand, trees gen-
erated according to the second configuration are generally less balanced. To assess the
query performance of the constructed trees, we generate only uniformly distributed
queries. The distribution of the query points is irrelevant to our tests; they are not
stored in an acceleration structure and can be sorted and batched according to the
specific requirements of an application, if further speedup is desired.

We evaluate and report the radius search performance for the above configurations
in experiments of increasing radius values and two sets of sample populations, a low-
density one, ranging from 104 to 105 and a high-density one, ranging from 105 to 106.

For sake of fairness, we pre-compute the maximum neighbor capacity needed
among the queries prior to the execution of both frameworks in order to pre-allocate
per-query index and distance matrices and, therefore, gather every potential sample.

Uniform sample distribution. Figure 3 summarizes the results for the radius search
on uniformly distributed samples with low- and high-density sample populations, re-
spectively. When the radius is relatively small, we can clearly observe that our ap-
proach outperforms FLANN in every setup between query and sample size (Figure 3
(top- and bottom-left)). In contrast, for larger radii, when samples and query size
increase simultaneously (Figure 3 (top- and bottom-right)), the overall performance
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Figure 3. Radius search performance evaluation of uniformly distributed low-density sam-
ples (top row) and high-density samples (bottom row). The radius bandwidth, relative to the
sample space bounding-box side, is indicated on top of each contour.

gain via the ray-tracing traversal is immediately negatively affected and as a result,
the FLANN kd-tree becomes more efficient.

In Figure 4, we demonstrate the effect of the search radius for a relatively small
fixed query (215) for both low- and high-density sample sets, in order for the gath-
ering buffers to fit into GPU memory. In the first case (Figure 4 (left)), our method
outperforms FLANN, despite the aggressive radius size. However, as the sample
density increases, the performance deteriorates rapidly even for small radius values
(Figure 4 (right)). Performance degradation is mainly caused by the increased overlap
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Figure 4. Radius of increasing size with constant query size
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)
, for uniformly distributed

samples of low density (left) and high density (right).
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of sample AABBs as opposed to FLANN, which performs near optimal point-wise
splits due to the spatial median split strategy it employs, effectively generating higher
quality trees.

Gaussian sample distribution. In the second configuration, we measure the perfor-
mance of simulating non-uniform distributions of samples; the results are presented in
Figure 5. The multi-modal Gaussian distribution reflects a more realistic dispersion of
samples in the queried space than the uniform case, since in practical-application sce-
narios, samples are either concentrated on the geometry surfaces (e.g., object point-
clouds, particles) or form volumetric concentrations (e.g., particle systems and sam-
ples in participating media). As we can observe, our method performed better than
FLANN in every combination of sample population and number of queries. Addi-
tionally, in contrast to the case of the uniform sample distribution, our method outper-
formed FLANN in all tests with varying radius, as shown in Figure 6 under similar
query size configuration. In part, the significant performance gap is due to the differ-
ent splitting strategies during the creation of the acceleration data structures as well
as a relative overhead introduced, especially in the case of the FLANN kd-tree, from
incoherent memory access during the result-set updates.
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Figure 5. Radius-search evaluation for multi-modal Gaussian distributed samples with low
density (top row) and high density (bottom row). The radius size, relative to the sample space
bounding-box side, is depicted on top of each contour.
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4.2. Geometry Processing Tasks

The task of point-cloud registration requires efficient nearest-neighbors searches. Given
a set of points as a sample reference and a set of points as the query point-cloud, the
objective is to evaluate for every point in the query subset, the closest corresponding
point in the reference set and record the point-wise distance. The latter operation is
often invoked via truncated k-nn search, based on a predefined radius and k = 1.
In many modern applications, such as interactive digitization, the point clouds must
be aligned and incrementally updated during the process, which demands both fast
queries and short acceleration-structure build time.

We assess the performance of our method with the OptiX BVH builder compared
to the FLANN kd-tree on this task in four distinct densely distributed point clouds that
vary in size from 100K to 1M points. For each point cloud, we randomly subtract half
the points and use them as the queries, while the remaining ones serve as the sample
set from which we construct our tree hierarchy. This arrangement effectively models
the scenario of nearest-point queries for partial surface-scan registration, where points
in the dataset have similar populations and largely represent the same surface, albeit
with different samples. The radius hyper-parameter is identical and pre-tuned for both
frameworks to match the radius required to gather one sample on average. It should
be noted that in these experiments, for both frameworks, we only allocate buffers
corresponding to k = 1 for each query point, instead of trying to accommodate all
samples in the query radius.

From the performance measurements presented in Figure 7 for k = 1, we can
observe that our method’s inference time is consistently faster in every case by at least
2.0×. Additionally, we can observe that, due to the superior tree-construction timings
of OptiX BVH, as opposed to FLANN kd-tree, our method can produce interactive
frame rates, when construction of the query point cloud is also necessary, in order to
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# points k = 1 k = 4 k = 8

Build
Lionhead 100K 1.4/21.4 (14.9×) 2.4/26.2 (10.8×)
Metope 350K 3.3/29.1 (8.6×) 4.9/37.4 (7.5×)
Dora block 500K 4.5/35.2 (7.7×) 6.5/42.4 (6.5×)
Hermes 1M 7.8/45.4 (5.8×) 11.8/59.6 (5.0×)

Search
Lionhead 100K 0.1/0.4 (3.3×) 0.2/0.7 (2.8×) 0.5/0.9 (1.7×)
Metope 350K 0.2/0.7 (2.8×) 1.0/1.7 (1.5×) 1.9/2.6 (1.3×)
Dora block 500K 0.3/0.9 (2.7×) 1.6/2.6 (1.5×) 3.4/3.7 (1.1×)
Hermes 1M 1.1/2.2 (2.0×) 4.3/6.4 (1.4×) 8.1/8.2 (1.0×)

Figure 7. Build and Gather measurements comparing our OptiX-based radius-search method
and FLANN on four point clouds tracking different number of nearest neighbors. The num-
bers in the parentheses indicate the performance improvement of our method over FLANN.

perform bi-directional point-wise closest point queries and when the query subset is
progressively adapted (e.g., for live progressive surface scanning).

Another family of common geometric operations on point clouds is the estimation
of local geometric features, such as curvature or surface normal orientation [Guen-
nebaud and Gross 2007; Hoppe et al. 1992]. This task also typically requires local
neighborhood determination on point clouds. For the simplest case of normal estima-
tion, a reasonable approximation is often achieved when, for every point, the normal
is estimated using the three-closest neighboring points. We evaluate the performance
of the latter operation on the same set of point clouds described earlier. The radius
hyper-parameter is tuned in a similar manner to the previous experiment. For this
task, every point serves as a query and a sample at the same time and, therefore, we
set the maximum number of neighbors required, k, equal to 4. We also repeat the
experiment for k = 8 and set the radius for each point cloud accordingly.

Due to the small number of result records k per query (k > 1) allocated, buffer
traversals and frequent updates are invoked from both frameworks during the search
phase. However, as shown in Figure 7, for k = 4, we observe that our approach is still
faster in every test. Setting k = 8, closed the gap in terms of relative inference time
over FLANN. Nevertheless, data structure construction time for every point cloud
remained significantly lower.
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4.3. Progressive Photon Mapping

We further evaluated our radius-search method on progressive photon mapping by
Hachisuka et al. [2008], extended with the global statistics formula proposed by
Knaus et al. [2011]. This method invokes a bidirectional tracing scheme, from both
the light sources and the virtual sensor, in order to approximate the energy equilib-
rium. A data structure, the photon map, is responsible for caching and indexing the
particles that iteratively emanate in batches from the light sources.

Typically, due to multiple surface-scattering events, the total number of active
photon records can vary from a few thousand to over a million in each frame. Addi-
tionally, in almost every case, the photon distribution after the end of the light-tracing
phase will be highly non-uniform, due to convergent light paths and the termination
of photons on scene-geometry surfaces. Consequently, several efficiency issues arise,
making the gathering stage a non-trivial task to handle, since an additional data hierar-
chy is required in order to maintain these photons. Furthermore, progressive variants
of the photon-mapping algorithm that process a new batch of photons in each itera-
tion, require a reconstruction step of the whole hierarchy in every progressive step.
This signifies the importance of efficiently performing both the initialization of the
data structure and the gathering process, in the form of radius-search queries.

For our case study, we ran experiments mainly on indoor scenes and did not em-
ploy any path-length reduction strategy, such as Russian Roulette. As such, we main-
tained as many active photons as possible per frame and stressed the data-structure
construction and access. Similar to the previous applications, we used the OptiX
BVH to store the photon samples, which we queried with the camera-recorded hits
and evaluated the performance of our gathering variant against the FLANN kd-tree
on the same task.

For this set of experiments and for the OptiX approach only, we fully exploited the
structure of this algorithm during the gathering phase and evaluated the photon den-
sity in-place during the intersection-program invocation (see Listing 2), effectively
omitting the index and distance buffers, altogether. This greatly simplified the imple-
mentation and allowed the gathering of an arbitrary number of samples in the local
neighborhood, as compared to the FLANN framework. This is also the reason why
Gather times in the OptiX implementation are significantly smaller than the FLANN
case. Please bear in mind that the same modifications could in theory be applied to
the FLANN framework, but would require significant customization and algorithm
insight to optimize, whereas in our case, they were implemented in a few lines of
CUDA kernel code.

Since FLANN requires pre-allocated GPU buffer pointers for the radius-search
phase, we invoke this method with a fixed maximum capacity of photons, a value
that we independently tune prior to the rendering phase based on the maximum num-
ber of gathered photons recorded with OptiX. We observed in experiments that al-
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Figure 8. Example renderings that demonstrate our approach in closed environments of ar-
bitrary light complexity. From left to right: glass, pool, bathroom and fireplace. All scenes
were rendered with path length equal to five, for both eye and light sensors.

locating a tight array effectively minimizes potential overheads induced by memory
incoherence. Furthermore, we set the gathering method for the FLANN invocations
to Flann undefined, which forces FLANN to decide internally whether to employ an
iterative or a heap-based update strategy during the radius search. All experiments
use path segments of length five from both the eye sensor and the lights, in order to
capture every dominant global-illumination effect. For every scene, the rendering res-
olution is 1920× 1080 and the photon batch size per iteration is set to 500K. Figure 8
presents the example scenes used in our tests.

In Figure 9, we investigated the impact of employing different photon-batch sizes.
Specifically, we measured the performance of construction and gathering for photon
batches between 100K and 1000K emitted per frame, averaged over 50 frames. We
did not include tracing performance since this component is handled from OptiX for
both cases. Table 1 summarizes the photon-map construction timings with respect
to different photon-batch sizes. Naturally, both data structures were negatively af-
fected by the increase of active photons, however, OptiX construction times remained
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Figure 9. Cumulative performance evaluation of Build and Gather timings averaged over
the first 50 iterations, comparing our proposed method and FLANN with increasing size of
photon-batch emission for each scene of Figure 8.
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100K 200K 500K 1000K
Build

Glass 1.3/42.0 (31.3×) 2.0/61.9 (29.7×) 5.2/99.9 (19.2×) 9.4/175.9 (18.5×)
Pool 1.9/47.1 (23.6×) 3.7/63.3 (16.7×) 7.9/123.7 (15.5×) 15.1/222.2 (14.7×)
Bathroom 2.0/53.1 (26.1×) 3.2/68.9 (21.3×) 7.6/123.4 (16.0×) 14.6/229.9 (15.7×)
Fireplace 1.8/56.8 (31.1×) 3.7/73.5 (19.3×) 6.7/141.6 (20.9×) 12.2/220.3 (18.0×)

Gather
Glass 5.6/8.0 (1.4×) 5.3/27.9 (5.2×) 5.8/48.4 (8.3×) 6.3/90.4 (14.2×)
Pool 5.8/4.7 (0.8×) 6.9/7.8 (1.1×) 8.0/25.1 (3.1×) 12.2/46.1 (3.7×)
Bathroom 7.3/15.6 (2.1×) 9.6/46.1 (4.7×) 16.3/83.7 (5.1×) 33.4/131.9 (3.9×)
Fireplace 8.4/14.7 (1.7×) 11.0/42.1 (3.8×) 22.6/72.1 (3.1×) 43.0/108.6 (2.5×)

Table 1. Detailed Build and Gather timings of our OptiX implementation vs FLANN on four
test scenes using different photon batch sizes. The numbers in the parentheses denote the total
improvement over FLANN.

consistently faster than FLANN in every test case, due to the framework’s highly-
parallel build process as opposed to the less efficient top-down FLANN builder. In
the same table, we demonstrate the gathering performance of each framework un-
der the same photon-batch size for every scene. Photon density immediately affects
performance for both data structures during the gathering process. Still, our radius-
search method performed better in almost every test case. An exception is the pool
scene, with photon-batch size equal to 100K, for which performance difference is
marginal.Despite the negative impact of the batch size on the relative performance
gain of our method, the latter does not drop as fast as in the case of the previous
experiments in Sections 4.2 and 4.1. This is mainly due to FLANN’s excessive num-
ber of gather buffer updates in dense photon regions, in contrast to our method that
directly accumulates photon density, without storing intermediate photons.

Finally, it is worth noting that for relatively small photon batches (100K−200K),
the total build and gathering operations will consume less than 15ms of the total com-
putation time on every scene. This potentially enables the use of progressive variants
of photon mapping for rendering tasks at interactive frame rates.

4.4. Other Experiments

Finally, we re-evaluated the performance of both frameworks using a non-RTX GPU
hardware, such the NVIDIA GeForce GTX 1080 with 8GB video memory.

In the case of geometric queries (see Section 4.2), we use an identical configura-
tion for both k = 1 and k = 4 cases. In Table 2 (left), we present relative perfor-
mance gains for each GPU card independently for the case of a medium-sized point
cloud (350K samples) and a dense one (1M samples). As measurements indicate, the
gathering inference time favors our approach in almost all settings. Additionally, the
construction performance of the index remains consistently superior.
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k = 1 k = 4
Build

Metope 8.6×/2.2× 7.5×/2.1×
Hermes 5.8×/1.5× 5.0×/1.6×

Gather
Metope 2.8×/1.1× 1.5×/0.9×
Hermes 2.0×/1.5× 1.4×/1.2×

200K 1000K
Build

Bathroom 19.3×/4.4× 18.0×/4.3×
Fireplace 21.3×/5.1× 15.7×/4.9×

Gather
Bathroom 4.7×/4.5× 3.9×/3.5×
Fireplace 3.8×/4.4× 2.5×/3.3×

Table 2. Relative performance gain of Build and Gather stages for geometry-processing tasks
(left) and progressive photon mapping (right) of our OptiX implementation vs FLANN on an
RTX 2080 Ti (red) and a GTX 1080 (blue).

Similarly, in the progressive photon-mapping task (see Section 4.3) and under
the same configuration, we measured the performance in two scenes with complex
illumination effect such as the bathroom and the fireplace. In Table 2 (right), we show
the relative performance gain for low-density and high-density photon-batch sizes
(200K and 1M) in which our approach remains superior in all cases.

Due to the underlying hardware improvements specifically targeting hierarchi-
cal data-structure construction on the Turing micro-architecture, the corresponding
Build-stage gain is significantly higher on the RTX card. However, the relative gain
of the Gather stage is not significantly larger on the RTX compared to the non-RTX
card. This is to be expected, since the queries do not utilize the triangle-intersection
hardware of the former and only take advantage of generic improvements in the newer
architecture.

5. Conclusion

In this work, we proposed a mapping of the general radius-search task to the ray-
tracing paradigm. Our approach outperforms a GPU implementation of FLANN, a
widely used kd-tree option, in all but the most extreme scenarios. Even in those cases,
by dramatically reducing the construction time of the supporting spatial-queries index
due to the use of highly-optimized ray-tracing acceleration data-structure builders, our
approach can quickly close the negative performance gap that might be induced from
searching invocations. The superior performance combined with the implementation
simplicity, makes our approach a suitable and elegant replacement for any intensive
application on the image synthesis or geometric-processing context. The fast accel-
eration data-structure build time also makes our approach especially appealing for
applications where the sample set is continuously updated, such as progressive pho-
ton mapping and incremental, live 3D scanning.

The main limitation of our approach is that it cannot be used with arbitrarily large
radii, e.g., for performing unbounded k-nearest neighborhood queries. This would
imply that each sample bounding-box volume is occupying most of the available total
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space with the worst case being the total sample space itself. This effectively elim-
inates any possible object-based splitting strategy, resulting in a single flat 1-level
tree hierarchy that would render our approach completely ineffective. Still, in most
practical applications, this extreme case is seldom required, as most neighborhood
queries impose some sensible limit beyond which samples returned are deemed in-
valid anyway. Another, more subtle potential limitation is the inherent inability of
this method to shrink the radius parameter during the search of k-nearest samples,
since the radius is used for the determination of the node bounds of the hierarchical
data structure. This may lead to queries in dense areas searching for a limited num-
ber of point samples performing redundant operations, compared to a typical kd-tree.
However, throughout our experiments, and especially in the photon-mapping tests,
we did not encounter any noticeable performance degradation.
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Appendix: Surface Heuristic as an Upper Bound to the Volume Heuristic

In this section, we discuss and establish theoretical guarantees about the final tree quality of a
SAH-optimized tree builder for our radius-search task. The SAH function is defined as

Csah(T ) = Ci

∑
n∈I

SA(n)

SA(root)
+ Cl

∑
l∈L

SA(n)

SA(root)
+ Ck

∑
l∈L

SA(l)

SA(root)
N(l), (3)

where Csah(T ) is the expected cost of the constructed tree T and I, L account for the set of
interior and leaf nodes, respectively. For any given node n of T , function SA(n) calculates
the surface area of an AABB and if n ∈ L, function N(n) returns the number of primitives
records enclosed by it. The quantity root stands for the bounding box of the entire scene. The
ratio of the surface areas is the conditional probability that an un-occluded ray starting from
the scene root will also hit the node. Finally, Ci, Cl, and Ck measure the intersection cost of
an interior and leaf node as well as the primitive at a leaf, respectively. Typically, Ck ≥ Ci

and Cl = 0. Similarly, the volume heuristic (VH) cost function is

Cvh(T ) = Ci

∑
n∈I

V (n)

V (root)
+ Ck

∑
l∈L

V (l)

V (root)
N(l), (4)

where V (·) is the volume of a node. The rest of the parameters are identical to the surface-area
heuristic cost.

We want to prove the following statement :

Csah(T ) ≥ Cvh(T ). (5)
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Let S be an arbitrary set of samples sj , each with an AABB. Let also T be the set of all
possible binary trees formed for the hierarchical storage of the above sample bounds. For any
node n in any T ∈ T the surface area and volume are

SA(n) = 2(wh+ hd+ wd),

V (n) = whd,

where w, h and d corresponds to the width, height and depth of AABB, respectively. Given
also the root-node dimensions w̃, h̃, d̃, with the obvious property d̃ ≥ d, h̃ ≥ h, w̃ ≥ w, the
following relations hold:

d̃ ≥ d⇔ wh(w̃h̃d̃) ≥ w̃h̃(whd),

h̃ ≥ h⇔ wd(w̃h̃d̃) ≥ w̃d̃(whd),

w̃ ≥ w ⇔ hd(w̃h̃d̃) ≥ h̃d̃(whd).

Summing up each side of the above inequalities we get

(wh+ wd+ hd)(w̃h̃d̃) ≥ (w̃h̃+ w̃d̃+ h̃d̃)(whd)⇔
wh+ wd+ hd

w̃h̃+ w̃d̃+ h̃d̃
≥ whd

w̃h̃d̃
⇔ SA(n)

SA(root)
≥ V (n)

V (root)
.

Since every component of the cost models in Equations (3) and (4) is non-negative and Ci,
Ck, and N(l) are identical in both cost models, it is straightforward to show that Equation (5)
holds, which now concludes our proof.

References

BENTLEY, J. L. 1975. Multidimensional binary search trees used for associative search-
ing. Commun. ACM 18, 9 (Sept.), 509–517. URL: https://doi.org/10.1145/
361002.361007. 27

BESL, P. J., AND MCKAY, N. D. 1992. A method for registration of 3-D shapes. IEEE
Trans. Pattern Anal. Mach. Intell. 14, 2 (Feb.), 239–256. URL: https://doi.org/
10.1109/34.121791. 27

DOMINGUES, L. R., AND PEDRINI, H. 2015. Bounding volume hierarchy optimization
through agglomerative treelet restructuring. In Proceedings of the 7th Conference on High-
Performance Graphics, Association for Computing Machinery, New York, NY, USA, HPG
’15, 13–20. URL: https://doi.org/10.1145/2790060.2790065. 27

FABIANOWSKI, B., AND DINGLIANA, J. 2009. Interactive global photon mapping. Com-
puter Graphics Forum 28, 4, 1151–1159. URL: https://onlinelibrary.wiley.
com/doi/abs/10.1111/j.1467-8659.2009.01492.x. 28, 29

GEORGIEV, I., KŘIVÁNEK, J., DAVIDOVIČ, T., AND SLUSALLEK, P. 2012. Light transport
simulation with vertex connection and merging. ACM Trans. Graph. 31, 6 (Nov.). URL:
https://doi.org/10.1145/2366145.2366211. 26

GUENNEBAUD, G., AND GROSS, M. 2007. Algebraic point set surfaces. ACM Trans. Graph.
26, 3 (July). URL: https://doi.org/10.1145/1276377.1276406. 38

44

http://jcgt.org
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/34.121791
https://doi.org/10.1109/34.121791
https://doi.org/10.1145/2790060.2790065
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01492.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2009.01492.x
https://doi.org/10.1145/2366145.2366211
https://doi.org/10.1145/1276377.1276406


Journal of Computer Graphics Techniques
Fast Radius Search using Bounding Volume Hierarchies

Vol. 10, No. 1, 2021
http://jcgt.org

HACHISUKA, T., OGAKI, S., AND JENSEN, H. W. 2008. Progressive photon mapping.
ACM Trans. Graph. 27, 5 (Dec.). URL: https://doi.org/10.1145/1409060.
1409083. 30, 34, 39

HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J., AND STUETZLE, W. 1992.
Surface reconstruction from unorganized points. SIGGRAPH Comput. Graph. 26, 2 (July),
71–78. URL: https://doi.org/10.1145/142920.134011. 27, 38

JENSEN, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eu-
rographics Workshop on Rendering Techniques ’96, Springer-Verlag, Berlin, Heidelberg,
21–30. 26, 27

KARRAS, T., AND AILA, T. 2013. Fast parallel construction of high-quality bounding
volume hierarchies. In Proceedings of the 5th High-Performance Graphics Conference,
Association for Computing Machinery, New York, NY, USA, HPG ’13, 89–99. URL:
https://doi.org/10.1145/2492045.2492055. 27

KNAUS, C., AND ZWICKER, M. 2011. Progressive photon mapping: A probabilistic ap-
proach. ACM Trans. Graph. 30, 3 (May). URL: https://doi.org/10.1145/
1966394.1966404. 39

KNOLL, A., MORLEY, R. K., WALD, I., LEAF, N., AND MESSMER, P. 2019. Efficient
particle volume splatting in a ray tracer. In Ray Tracing Gems: High-Quality and Real-Time
Rendering with DXR and Other APIs. Apress, Berkeley, CA, 533–541. URL: https:
//doi.org/10.1007/978-1-4842-4427-2_29. 28
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