Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021 https://jcgt.org

MMPX Style-Preserving Pixel-Art Magnification

Morgan McGuire Mara Gagiu
University of Waterloo & NVIDIA University of Waterloo
::.'. The Minotaurt QI
{1] 1
IR R R

ﬂ

s STR:LE DEX:11 THT:E HF:FE L, J

(a) Input Image

, '_- -r

f' The Minotaurt ' g The Minotoaur?t '

FEETE S 4&@@@ ?

_¢STF: 1 DEX:11 THT:& HF: ?E-&J, _;STR 18 DEX:11 INT:6 HP: ?65_“,
(b) Magnified 2x with Nearest (c) Magnified 2x with MMPX

Figure 1. (a) Pixel art combining sprites, text, and Ul elements (b) magnified with nearest-
neighbor filtering becomes blocky relative to the original pixel size; (¢) MMPX filtering re-
fines lines, curves, and patterns for the new resolution, while mostly preserving the palette,
transparency, and shape aspects of the original artwork.

Input derived from Oryx Design Lab licensed sprites https://www.oryxdesignlab.com/products/16-bit-

fantasy-tileset

Abstract

We present MMPX, an efficient filter for magnifying pixel art, such as 8- and 16-bit era
video-game sprites, fonts, and screen images, by a factor of two in each dimension. MMPX
preserves art style, attempting to predict what the artist would have produced if working at a
larger scale but within the same technical constraints.

Pixel-art magnification enables the displaying of classic games and new retro-styled ones
on modern screens at runtime, provides high-quality scaling and rotation of sprites and raster-
font glyphs through precomputation at load time, and accelerates content-creation workflow.

MMPX reconstructs curves, diagonal lines, and sharp corners while preserving the ex-
act palette, transparency, and single-pixel features. For general pixel art, it can often pre-
serve more aspects of the original art style than previous magnification filters such as nearest-
neighbor, bilinear, HQX, XBR, and EPX. In specific cases and applications, other filters will
be better. We recommend EPX and base XBR for content with exclusively rounded corners,
and HQX and antialiased XBR for content with large palettes, gradients, and antialiasing.
MMPX is fast enough on embedded systems to process typical retro 64k-pixel full screens
in less than 0.5 ms on a GPU or CPU. We include open source implementations in C++,
JavaScript, and OpenGL ES GLSL for our method and several others.

83 ISSN 2331-7418

https://jcgt.org
https://www.oryxdesignlab.com/products/16-bit-fantasy-tileset
https://www.oryxdesignlab.com/products/16-bit-fantasy-tileset

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

1. Introduction

1.1. Pixel Art

In the graphics and gaming community, “pixel art” refers to rasterized graphics el-
ements including sprites, fonts, and whole framebuffer images consistent with the
technical constraints of 8- and 16-bit consumer computers from the 1980’s and 1990’s,
which are now referred to as retro consoles. This style has remained artistically and
commercially important for decades, with increased interest in recent years enabled
by retro gaming platforms built on low-cost embedded processors.

Figure 1 shows an example of pixel art au-
thored by hand (a), magnified by nearest neigh-
bor filtering (b), and automatically magnified (c)
by the MMPX filter introduced in this paper.
Magnification is useful for increasing the reso-
lution of existing assets, for scaling the rendered

output of entire games, or for creating fonts and
sprites that represent larger objects beside the))
originals while approximating a consistent style, Flgl.m.e 2. A ma.gmﬁe.d mmote.lur
as shown in Figure 2. .styhstlca.lly compatible with the orig-
. S . inal soldier.

Pixel art arose from limitations in retro con-
sole hardware, such as 8x8 font glyphs, 16x16 or 32x32 individual sprites, 320x240-
or-smaller screens, and 256 or fewer colors. These are not hard limits on modern
devices, but aesthetic guidelines. Critically, because of the scale and color limita-
tions, image features such as character eyes or hands are often a single pixel, edges
are often jagged instead of antialiased with intermediate shades, and dithering is often
used to approximate shading and more colors as well as texture. This makes the art
style extremely sensitive to small artifacts at the pixel scale during rendering, unlike
high-resolution 3D game rendering or natural images in which individual pixels may
change without significant change to perception of the whole image.

The retro consoles include the Nintendo Entertainment System/Famicom (1983),
Super Nintendo (1990), Game Boy (1989), Game Boy Color (1998), and Game Boy
Advance (2001); Sega Master System (1985) and Genesis/Mega Drive (1988); Atari
7800 (1986), and Commodore 64 (1982).

Interest in such platforms has not waned. New hardware and emulator products
mapping pixel-art games to modern hardware include Nintendo’s Switch NES/SNES
Online (2018), the new Nintendo Classic NES (2016) and SNES (2017) consoles,
Sega Genesis Mini (2019), PiBoy DMG (2020), Retroid Pocket 2 (2020), Odroid-GO
Advance (2019). See more examples at https://obscurehandhelds.com/.

Just as the platforms that display it may be contemporary, pixel-art content it-

self does not necessarily originate from the 8- or 16-bit era. Many recent games and

84

https://jcgt.org
https://obscurehandhelds.com/

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

standalone artworks adopt similar constraints as an aesthetic even when practically
unconstrained by hardware. Some motivating examples are critically lauded indie
games such as Superbrothers: Sword & Sworcery EP (2011), Towerfall (2013), Un-
dertale (2015), Crawl (2017) and Celeste (2018). There are hundreds of modern pixel
art games for sale on the Steam, itch.io, Epic, Apple, and Android game stores.

“Fantasy consoles”—emulators for newly-designed retro hardware specifications—
are currently popular for hobbyist development, game jams, and educational use.
These adopt restrictions similar to the real retro consoles but integrate more mod-
ern development environments. The constraints reduce the complexity of game de-
velopment to make the platforms more accessible for new programmers and help
limit scope for projects. Specifically, 8-bit and 16-bit era style pixel art presents a
Goldilocks zone. The constraints ensure that almost anyone can draw something such
as an 8 x 8, 16-color sprite in reasonable in a short period of time. Yet, the design
space is rich enough that good artists can still draw beautiful images. In contrast,
the tighter constraints of earlier platforms such as Atari 2600 tend to produce art that
is less appealing to a modern audience, and the looser ones of later Amigas leave
too much freedom, in which amateurs can get lost. Examples of platforms targeting
this zone include PICO-8 (2014), TIC-80 (2020), Pixel Vision 8 (2017), and our own
quadplay+< (2018).

1.2. Magnification Filters

Three important, common, and non-trivial rendering operations on pixel art are mag-
nification (scaling up), minification (scaling down), and rotation at angles other than
multiples of 90°. These are non-trivial because they require resampling the source in
ways that necessarily cannot exactly preserve each pixel and feature. This paper ad-
dresses magnification, which is an ongoing focus of algorithmic development within
the pixel-art community, and rotation indirectly via magnification. It does not address
the minification problem.

Source Nearest Filter Redrawn by an Artist

Figure 3. Nearest-neighbor filtering fails to take advantage of increased resolution during
magnification, compared to a hand-drawn magnified image. Derived Oryx Design Lab sprites

https://www.oryxdesignlab.com/products/ultimate-fantasy-tileset

85

https://jcgt.org
https://www.oryxdesignlab.com/products/ultimate-fantasy-tileset

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

Magnification can be posed as an image-filtering problem. The relationship be-
tween points on a continuous domain in a source and transformed destination is math-
ematically predetermined. The filter’s role is to produce an output pixel value that
compensates for the source pixel locations not aligning with its pixel grid.

The simplest algorithm for magnification is nearest-neighbor filtering, also known
as point sampling. This maps each destination pixel center back to the source image
and then samples from the nearest pixel center. Point sampling is efficient, preserves
transparency, and preserves sharpness. However, it will also produce results that di-
verge significantly from what a human artist might create if drawing the magnified
or rotated image directly. For example, under magnification the destination image
will exhibit exaggerated sharpness and jagged edges on curves and lines as shown in
Figure 3. Under rotation, dithering patterns will alias, single-pixel features may be
lost or exaggerated, single-pixel lines may be broken, and silhouettes will have sharp
projections as shown in Figure 17(a).

Any magnification filter is also a rotation filter when applied under variations of
Xenowhirl’s RotSprite method [2007]. Here, the source image is pre-magnified, and
then filtered with nearest neighbor during combined rotation and minification back
to the original scale. If the magnification filter is nearest neighbor this provides no
advantage over naive rotation using nearest neighbor because it is mathematically
identical. However, for more sophisticated magnification filters, this process gener-
ally produces better results than nearest-neighbor filtering of rotation on the original
source. Xenowhirl describes additional heuristics that can further improve the output
if applied during the rotation filtering.

We characterize a pixel-art filter as style-preserving if the output resembles what
the original artist might have drawn were it intended as a seamless part of the original
artwork. This is subjective, and it is probably impossible for any algorithm (let alone
one that runs in a few nanoseconds per pixel!) to perfectly achieve. Yet many aspects
of style preservation are achievable and non-controversial to judge. It is often obvious
to a careful observer when one magnification filter is performing better than another
for a specific piece of pixel-art content. Style-preserving properties include:

e Sharp convex and concave corners remain sharp;
o Palette preservation; destination colors are from the corresponding source region;

Transparency is preserved;

Curved and diagonal edges are refined to the destination resolution;
Line and dot thickness is preserved relative to scale;

Intersecting lines continue to intersect;

Non-intersecting lines do not intersect.

Section 5 compares filters on images constructed to test these criteria.

86

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

1.3. Motivation and Contributions

We identified three important scenarios for applying pixel art filters.

Interactive content-creation tools accelerate artist workflow by producing a good
approximation of the desired output, which an artist can then retouch to perfect. For
example, Figure 2 showed a reasonable automated result for the large minotaur com-
pared to nearest-neighbor filtering, but given the opportunity to retouch it, we would
thin the outlines to better match the smaller soldier and round the nose. For the sizes
of images considered in pixel art, there is little performance concern in this case and
quality is the primary goal. Interactive tools are useful for creating larger or rotated
fonts, background images, and sprites from initial artwork for new games or stan-
dalone pixel-art compositions. They are also useful when remastering existing pixel-
art content for new display resolutions.

Load-time filter implementations allow automated preprocessing to generate ad-
ditional sizes or orientations of sprites and fonts at high quality. That content then can
be sampled with nearest-neighbor filtering without requiring expensive filtering at
run-time. This case combines quality and performance targets, as the method should
conserve loading time by running in tens to hundreds of milliseconds per spritesheet.
There is convenience during development in preferring load-time to interactive meth-
ods, and an advantage for reducing download times and physical distribution sizes.
Load-time filtering is particularly valuable for hobbyist and student programmers who
are working without the benefit of artists on their development team. This case targets
creation of new games with pixel-art styles.

Run-time filter implementation processes individual sprites or full-screen images
in a few milliseconds per frame, with performance on low-end processors of paramount
importance. This case is most important for systems that work with either modern or
historical content that did not anticipate access to a higher-resolution display.

The authors have roles as the developer of the quadplay< fantasy console, an
educator in game development courses, and pixel artists. As such, we were motivated
by the interactive and load-time cases to develop an improved magnification filter for
new pixel art on modern displays. Our MMPX filter has been in development and use
for game jams and education through the open source quadplay+< platform for a year.
It is now stable and performant. This paper contributes implementations of MMPX
in three languages, reference implementations of other popular filters for comparison,
and extensive performance and quality evaluation.

Although our development focussed on the first two cases, this paper also shows
in Section 6 that MMPX is sufficiently fast and high-enough quality for run-time ap-
plication in retro game/hardware emulators. Yet, we offer two cautions about using
any filter in this manner. The first caution is that we believe MMPX and previous mag-
nification filters inherently produce lower-quality results when applied to composited
full-screen content than when applied to the individual sprites before compositing.

87

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

Figure 4. Beware that (left) content originally authored for CRT displays is misrepresented
when displayed directly on (right) modern uniform, square pixel displays, and magnification
filters may further distort the presentation instead of enhancing it. Sprites from Wizardry, ©1981
Sir-Tech, image capture from https://twitter.com/MOG4791/status/886922645375139841

That is because the individual sprites have more information, including the alpha
masks separating their features and the continuation of background features which
are partly obscured by the foreground after compositing. This is especially the case
for consistent results under motion, where an animated foreground sprite will obscure
different parts of the background and thus change the interpretation of features when
processed after compositing.

The second caution is that true retro hardware and content was designed for
cathode-ray tube displays. These displays often had non-square aspect ratios, and pix-
els on them did not appear as uniformly-filled squares but as analog “filtered” shapes
closer to Gaussian splats with stronger blurring along horizontal scan lines. Artists
created content with these characteristics in mind and often exploited them. Unless
an emulator models such a display itself, true retro content on a modern display will
be overly jagged and bright as shown in Figure 4. Display-independent magnification
algorithms will not properly take frequency content and display filtering into account.
They produce net results that may be attractive and useful, but one must acknowledge
that the perceived image is not faithful to the original artistic intent.

2. Related Work
Natural image filters

We review filters for the related problem of magnifying natural images (i.e., pho-
tographs) or high-resolution rendered 3D content. These are generally not appropri-
ate for pixel art because they do not preserve style and are especially insensitive to
pixel-scale features and conventions.

88

https://jcgt.org
https://twitter.com/MOG4791/status/886922645375139841

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

Unbiased bilinear (cL_rINear in
OpenGL) magnification linearly inter-
polates between the four nearest sam-

ples. It creates gradient ramps and di-

amond artifacts in the output. At 2x,

every destination pixel lies exactly be- Nearest Bilinear Bicubic MMPX
tween four source pixels and is thus the

average of four values and very blurry. Figure 5. Biased bilinear and bicubic overblur.
Biased bilinear magnification shifts the destination by half a source pixel on each
axis, so that one quarter of the output pixels are directly copied from the source, half
are the average of two pixels, and only one quarter are the average of four pixels. This
yields sharper results but, as shown in Figure 5, is still blurry and is of course offset
slightly from the source. All bilinear results in this paper are the less-blurry biased
version. See our supplement for unbiased bilinear results for all figures.

GPUs contain filter circuits for bilinear interpolation. However, even if the overblur-
ring and introduction of new colors were acceptable, in practice hardware bilinear fil-
tering cannot be used for most pixel art. That is because pixel-art images are typically
encoded paletted or at four- or eight-bits per color channel. At such low precision,
the alpha (i.e., transparency) channel must be unassociated instead of premultiplied,
because premultiplication destroys the precision of low-alpha or low-value colors at
low bit rates. Current GPUs do not support proper hardware bilinear filtering for
unassociated alpha, which requires first scaling each color by its alpha value before
filtering and then normalizing by the average alpha value afterwards [Glassner 2015].
This can make bilinear filtering more expensive as well as lower quality for pixel art
than filters such as MMPX and EPX that perform almost no arithmetic and contain
no expensive division operations. We include reference implementations and results
of bilinear and biased bilinear magnification in our supplement.

Lanczos, sinc, bicubic, and other sharpening filters [Turkowski 1990] use a higher-
order kernel than the simple tent shape of a bilinear filter in order to preserve some
of the high frequencies that are attenuated by bilinear filters. This requires that they
have negative filter coefficients and necessarily can produce negative pixel values as
output that must be clamped to black. They also have the same issues as bilinear with
transparency. While frequently preferred over bilinear for magnification of natural
images, these still produce too many colors outside of the original palette, too much
blurring, and tend to destroy single-pixel features (see Figure 5).

Bilateral filters [Tomasi and Manduchi 1998] combine a static filter kernel, such
as a 2D Gaussian, with a spatially-varying mask. The mask zeroes out filter coeffi-
cients that appear to be from different features than the central pixel, determined by
measuring the color difference. This can create results similar to manual airbrushing,
where small blemishes in skin or noise signals are blurred away but significant feature

89

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

edges are preserved. When applied to a magnified image using a sharpening kernel,
this can reduce jagged edges without overblurring in the way that bilinear filtering
does.

There is a body of work on magnification or super-resolution filtering of natural
images by supervised machine learning from databases of low- and high-resolution
image pairs [Dai et al. 2015; Salvi et al. 2017; Xiao et al. 2020]. The NVIDIA
DLSS [Burnes 2020] algorithm increases the performance of ray-traced 3D games
using a sophisticated magnification filter. While the algorithm is unpublished, the
marketing materials indicate that it uses a combination of temporally amortized super-
sampling via reprojected previous frames, machine learning inference, and traditional
sharpening filters.

Filters developed for emulators

Unsurprisingly, the filters developed for the games industry and emulator community
tend to be the fastest and highest quality for processing pixel art.

EPX (“Eric’s Pixel Scaler”) [John- = = 1
ston 1992] was the first 2x pixel-art H E
magnification filter with a clear goal of D) |} al
preserving style. Eric Johnston created
it when porting the LucasArts SCUMM E ::.:: E :‘: E ::.:: E x

game engine from PC to the then-faster,

) .) Nearest EPX XBR MMPX
higher-resolution Macintosh [Thomas o
Figure 6. EPX and XBR indiscriminately

1999]. The algorithm was indepen-
round all corners and can fail at intersections.

dently reinvented and popularized by

Mazzoleni [2001] for the MAME retro-game emulator. Our MMPX algorithm builds
directly on EPX by extending its rule set to recognize more patterns, and our algo-
rithm name follows Johnston’s convention using our first initials.

EPX is very simple, extremely fast, and is in current use in both retro emulators
and new pixel-art games. It is well-suited to the LucasArts content of its era, which
had bubbly character and font designs, and in our judgement it remains superior in
both performance and quality to other filters we evaluated for that kind of content.
For content that contains corners and straight lines, including many pixel-art fonts, the
primary drawback of EPX is that it rounds everything too much as shown in Figure 6.

Maxim Stepin developed HOX (‘“high quality scaling,” sometimes stylized as
hg2x or HQx) [2003] for use in PC emulators of retro consoles as a 2x scaling filter.
He noted that it can be run twice to produce 4 x scaling and later released a separate
algorithm 3x. HQX is essentially a bilateral filter with a 3 x 3 kernel that is imple-
mented using lookup tables (it is roughly analogous to the Marching Cubes [Lorensen
and Cline 1987] isosurface tessellation algorithm in structure).

90

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

HQX produces beautifully antialiased Foomr 3
results with smooth gradients. It is su- I !ﬂ- !.-\E

perior to EPX when the introduction of

new colors is desired but frequently infe- 1 :3 1 E 1 3 1 E

rior when more strict style preservation
is the goal. That is because HQX intro- ~ Nearest HOX XBR-AA MMPX

duces new colors (Figure 7) and does not Figure 7. HQX and XBR-AA do not preserve

support transparency. Because HQX re- the palette or sharpness.

lies on lookup tables for its many cases,

the performance varies highly with the bandwidth and cache coherence available in
different implementations and platforms. We do not consider HQX sufficiently style-
preserving to meet our goals, but because of its popularity we include performance
results in this paper and provide implementations and result comparisons in our sup-
plement.

Hylian developed the XBR (“‘scale by rules,” sometimes stylized as xBR) [2011]
family of filters as a successor to HQX. It is also a form of bilateral filter, but uses
explicit color-space bounding boxes instead of enumerated cases in a lookup table.
The base version of the algorithm is more style-preserving than HQX because it han-
dles transparency and does not introduce new colors. It tends to handle more edge
slopes than EPX but still rounds corners and does not deal well with 45-degree slopes,
leaving them too jagged (Figure 6). More sophisticated versions correct the edge lim-
itations but introduce new colors while antialiasing (XBR-AA) and round corners as
shown in Figure 7. We include those variants in the supplement. XBR is orders
of magnitude more expensive than EPX, yet it does not provide consistently better
quality when the palette must be preserved.

Stasik and Balcerek [2017] derived a relatively complicated magnification filter
for pixel art within the general scientific image-processing literature. Their filter is
designed to support arbitrary scaling ratios instead of being hard-coded for 2x or 3 x.
In practice, the results are similar to Lanczos or bicubic results. They preserve more
frequency content than nearest or bilinear filtering, but almost none of the style of the
source image in the way that the EPX, XBR, MMPX, or even HQX do.

Xenowhirl developed RotSprite [2007] as an interactive tool for generating ro-
tated sprites while working on the Sonic video game series. It magnifies sprites in
a spritesheet before rotation and then applies various heuristics for minifiying them
afterward. In production, Xenowhirl manually retouched RotSprite output to build
spritesheets. We observe that when using a filter that is better than nearest for mag-
nification (such as EPX, XBR, HQX, or MMPX), RotSprite produce high-quality
results when using a fast, nearest-neighbor minification filter. This enables fully au-
tomatic run-time use because the magnification can be precomputed. In combination
with RotSprite, our results demonstrate that MMPX can produce slightly better thin

91

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

lines and outlines than EPX and XBR, but all three are much better than naive rotation
without magnification.

Style transformation

Some related work explores pixel-art filters with the goal of producing different source
or destination styles.

Han et al. [2018] introduced a minification and stylizing filter for transforming
natural images into pixel art. The PixaTool https://kronbits.itch.io/pixatool program
uses an undisclosed algorithm for the same transformation.

Coeurjolly et al. [2018] presented a method for converting 3D voxel art to vector
shapes. The shapes are smooth but the textures remain only nearest-neighbor magni-
fied, which may be aesthetically desirable in some applications.

Kopfs et al.’s [2011] depixelization algorithm converts pixel art into vector art
by maximally smoothing the contours. It runs in minutes per frame and does a re-
markable job of magnifying sprites, but alters the style significantly, where thin lines
in the source image have varying output thickness and all shapes become rounded,
reminiscent of clip art in a sketch style. A later implementation presented as a poster
[Kreuzer et al. 2015] produces similar high quality at 4x magnification. It runs in
about 140 ns/pixel on a GPU, which is sufficient for real-time on a desktop but two
orders of magnitude slower than the pixel-art filters such as EPX, XBR, and MMPX.

Several texture-synthesis or style-transfer methods can convert between natural
images and abstracted styles [Gatys et al. 2015; Park et al. 2019; Rebouas Serpa and
Formico Rodrigues 2019].

3. Expressing Filters as Rules

The EPX, XBR, and MMPX filters compute four destination pixels for a single source
pixel = using rules that recognize local features such as corners and edges. When a
small neighborhood of £ matches a rule’s pattern, it assigns one or two of the four
output destination pixels. Figure 8 shows the pixel indexing for this paper, which fol-
lows Mazzoleni’s notation. The 2x magnification filters produce a destination image
that is twice as large in each dimension as the source, so each source pixel £ maps
to four destination pixels g, &, 1, and M. The pixels in the 3 x 3 source neighborhood
are named a-1 in raster order, and the diamond points are named r-s. We use row-
major, top-down linear pixel packing where source pixel £ = src(x, y) is stored at
srcBuffer[x + y » srcwidth]. To simplify the presentation in this paper, we clamp
out-of-bounds reads to the edges of the source image.

For efficiency and given the target domain of pixel art, all versions operate on
packed 32-bit unsigned integer pixel values that we call ascrs (matching both OpenGL
and JavaScript’s default encoding across the platforms from our experiments) that are
8-bit normalized sSRGB values with an unassociated alpha channel.

92

https://jcgt.org
https://kronbits.itch.io/pixatool

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021

MMPX Style-Preserving Pixel Art Magnification https://jcgt.org
P
A B C
J K
Q D E Iz R
L M
G H I
s
Source Destination

Figure 8. A 2x magnification filter computes destination pixels J, ¥, L, and M from source

pixel £ and its neighborhood. Colors in this figure show corresponding pixels under Nearest.

A single-pass filter comprises loops over both dimensions and a main, inner-loop
body. On a GPU, these loops are implicit in the shader launch. A GPU compute
shader or CPU implementation iterates over the source dimensions and writes four
destination pixels per body execution, amortizing the cost of reading the neighbor-
hood and of executing the rules that apply to multiple destination pixels. Because it
iterates along rows, we structure a CPU implementation to only read the right-most
edge of the neighborhood per iteration, and pass along the remainder of the neighbor-
hood from the previous one (see Listing 5 at the end of the paper). This keeps most
of the working set in registers or at the top of the stack in L1 cache for a measurable
performance advantage. See our supplemental files for the JavaScript equivalent.

A similar optimization could be performed for very large images on a GPU
compute-shader implementation. However, given that the target spritesheet and screen
resolutions are comparable to the number of lanes on even an embedded GPU, it is
more efficient to process each set of four destination pixels in its own GPU lane and
let the GPU’s higher-cache bandwidth capture the data reuse pattern.

Listing 6 (at the end of the paper) shows our GLSL compute shader framework.
We use OpenGL ES shaders because they execute under both full OpenGL and the
reduced OpenGL ES standard embedded systems GPUs. We use GLSL version 3.10
because that is the highest level supported by the popular Broadcom Videocore VI
GPU on the Raspberry Pi 4-series system-on-a-chip.

A GPU pixel-shader implementation iterates over the destination dimensions and
writes a single pixel per body execution. See the code supplement for our GLSL pixel
shader framework supporting previous XBR and HQX implementations, which is not
used by our own MMPX algorithm, Nearest, or EPX.

When processing a source image with transparency, we recommend extending
boundary clamping to treat out of bounds pixels as fully transparent. When process-

93

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

ABGR8 J = E, K=E, L =E, M= E;

Listing 1. Nearest body rule (GLSL & C++).

ing a font sheet or spritesheet instead of a full image, process each glyph or sprite
independently for bounds, clamping so that pixels of adjacent elements are not mis-
interpreted as features that cross the boundary. Because MMPX resolves ambiguous
patterns by assuming a dark foreground, for processing font sheets with black back-
grounds we recommend converting the background to transparent or inverting the
image for filtering, and then restoring it in the destination. The version of MMPX
deployed in quadplay+ follows all of these practices.

Filters that preserve the local palette, such as MMPX, are implemented with a
series of rules for deciding which pixel value from the source neighborhood each
of the destination pixels should be assigned. In this context, the Nearest filter is
described by the single, unconditional rule in Listing 1: make all four destination
pixels equal to the central source value, k.

The EPX [Johnston 1992; Mazzoleni 2001] magnification filter in Listing 2 has
five rules. It begins with the Nearest rule, and then tests for overriding conditions.
Each of the four remaining rules considers one corner of the source neighborhood. If
the two spatially close source neighbors match each other and are different from the
other two, then the destination pixel corresponding to that corner is set to the value
of the matching source pixels. The first such rule examines the top-left corner: if the
pixel above and to the left of & have the same value and differ from the pixels to the
right and below, the corresponding to destination pixel s receives that value.

// Default to Nearest magnification
ABGR8 J = E, K=E, L =E, M = E;

// Round some corners

if (D ==B & D !=H && D !=F) J =D; // First corner rule
if (B ==F & B !=D && B != H) K = B;
if (H==D && H !'= F & H != B) L = H;
if (F == H && F !=B && F !=D) M = F;

Listing 2. EPX body rules (GLSL & C++).

Figure 9 visualizes the first EPX corner rule. The remaining three rules are sym-
metric to it. On the left (source) side of the rule diagram, we use colors to denote
pixel values that must be the same as each other for the rule to apply (here, only red-
coded), shades of gray to denote pixels that must be different from all of the colors but
not necessarily the same as other gray-coded pixels. White pixels are unconstrained.
Colors in rule diagrams solely denote patterns, not actual pixel colors.

94

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021

MMPX Style-Preserving Pixel Art Magnification https://jcgt.org
P
A c
K
0 D E F R ‘
L M
G H I
s

Figure 9. The first EPX corner rule. In our rule diagrams, the colors label pattern-matching
variables and not actual pixel values. Each saturated color, such as red, denote pixels that
must exactly match others marked with that color in the diagram. Gray matches any pixel that

is different from all saturated labels. White is unconstrained for the rule.

The right side of the rule diagram shows which destination pixels were set. Des-
tination values outside of the central 2 x 2 box are not set by the filter on this iteration
and may not have the values depicted. In this example, we can see that EPX extends
Nearest by rounding corners and smoothing the stair stepping on diagonal lines.

4. MMPX Algorithm

4.1. Utility Functions

We define some utility functions in Listing 3 to simplify the MMPX implementation.
The 1uma () function computes the sum of the three color channels plus 1 and weighs it
by 256 - alpha. We use this to identify dark or opaque values, which MMPX assumes
are foreground/positive-space pixels in otherwise ambiguous conditions. Because the
luminance is used only to coarsely make this distinction, we avoid the expense per-
ceptually weighting of color channels.

The a11_equ() functions return true if and only if all of their N arguments are
equal. The any_eqn () functions return true if and only if the first argument is equal to
any of the remaining N. The none_eqn () functions return true if and only if the first
argument is different from all of the remaining V.

Through profiling, we found that the a11_equ () and none_eqs () functions are faster
when implemented with bitwise operations, while the others are faster when imple-
mented in a straightforward manner with logical operations.

4.2. Fallback to Nearest (Lines 4—6)

Listing 4 gives the body of the MMPX algorithm in GLSL and C++, which have
similar syntax. It uses a preprocessor branch to distinguish between the languages
for the only implementation difference, which is that in C++ we pass two source
pixels labelled ¢ and r from the previous loop iteration instead of reading them each

95

https://jcgt.org

oINS e Y A

L) LW W L W L WD N DN NN NN = = = s = = e = e
AN R WD = OOV WNROWVOWNANWN R WN—=O\O

37
38
39

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

// Fast luminance approximation with transparency, assuming a bright
// background
uint luma (ABGR8 C) {
uint alpha = (C & OxFF000000u) >> 24;
return (((C & O0xO0FFO000u) >> 16) + ((C & O0xO0000FFOQu) >> 8) +
(C & 0x000000FFu) + 1lu) % (256u - alpha);

// True if all values are equal
bool all_eqg2 (ABGR8 B, ABGR8 A0, ABGR8 Al) {
return ((B = A0) (B~ Al)) == Ou;

bool all_eqg3 (ABGR8 B, ABGR8 A0, ABGR8 Al, ABGR8 A2) {
return ((B =~ AQ0) ~ Al) | (B " A2)) == 0u;

C

bool all_eqg4 (ABGR8 B, ABGR8 A0, ABGR8 Al, ABGR8 A2, ABGR8 A3) {

return ((B ~ A0) | (B ~ Al) | (B ~ A2) | (B ~ A3)) == 0u;
}
// True if any B == any An
bool any_eqg3 (ABGR8 B, ABGR8 A0, ABGR8 Al, ABGR8 A2) {
return B == A0 || B == Al || B == A2;
}
// True if no == any An
bool none_eqg2 (ABGR8 B, ABGR8 A0, ABGR8 Al) {
return (B != A0) && (B != Al);

}
bool none_eq4 (ABGR8 B, ABGR8 A0, ABGR8 Al, ABGR8 A2, ABGR8 A3) {
return B != A0 && B != Al && B != A2 && B != A3;

bool none_eqg8 (ABGR8 B, ABGRS A0, ABGR8 Al, ABGRS A2, ABGRS A3,
ABGR8 A4, ABGR8 A5, ABGR8 A6, ABGR8 A7) {
return ((A0°B) | (AL"B) | (A2°B) | (A3°B) |
(A4°B) | (A5°B) | (A6°B) | (A7°B)) != Ou;

Listing 3. Utility functions (GLSL & C++)

time. See our supplement for the JavaScript implementation, which differs only in the
equality operator syntax.

Line 4 is the same as Nearest filtering. Line 6 then tests whether any other pixel
in the central 3x3 grid is the same as the central source pixel . If none are equal, then
there are no identifiable features in the four destination pixels corresponding to &, so
Nearest is the best that can be done and the algorithm terminates for that iteration.

96

https://jcgt.org

0NN R W=

20

21

22

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
s8
59
60

Journal of Computer Graphics Techniques
MMPX Style-Preserving Pixel Art Magnification

Vol. 10, No. 2, 2021

https://jcgt.org

// Input: A-I central 3x3 g

// Output pixels default to
ABGR8 J=E, K=E, L=E, M=E;

if (none_eqg8(E,A,B,C,D,F,G,H

rid

the input value

)) o

// Read additional values at the tips of the diamond pattern (

ABGR8 P

src(srcX, srcY-2)

// In C++,
#if defined(GL_core_profile)

, S = src(srcX, srcY+2);

Q and R are passed from the previous pixel,

|| defined(GL_ES)

GLSL) .

outside of this branch.

ABGR8 Q = src(srcX-2, srcY), R = src(srcX+2, srcY);
#endif
// Precompute luminances
ABGR8 Bl = luma(B), D1 = luma(D), El = luma(E), F1 = luma(F), H1 = luma(H);
// 1:1 slope rules, extended from EPX
if ((D==B && D!=H && D!=F) && (E1>=D1 || E==A) && any_eqg3(E,A,C,G) && (E1<Dl || A!=D
|l E!=P || E!=Q)) J=D;
if ((B==F && B!=D && B!=H) && (E1>=Bl || E==C) && any_eqg3(E,A,C,I) && (E1<Bl || C!=B
|| E!=P || E!=R)) K=B;
if ((H==D && H!=F && H!=B) && (E1>=Hl1 || E==G) && any_eq3(E,A,G,I) && (El1<Hl || G!=H
|l E!=s || E!=Q)) L=H;
if ((F==H && F!=B && F!=D) && (E1>=F1 || E==I) && any_eq3(E,C,G,I) && (EL<F1l || I'!=H
|| E!=R || E!=S)) M=F;
// Intersection rules
if ((E!=F && all_eq4(E,C,I,D,Q) && all_eqg2(F,B,H)) && (F!=src(srcX+3, srcY))) K=M=F;
if ((E!'=D && all_eq4(E,A,G,F,R) && all_eqg2(D,B,H)) && (D!=src(srcX-3, srcY))) J=L=D;
if ((E!=H && all_eq4(E,G,I,B,P) && all_eqg2(H,D,F)) && (H!=src(srcX, srcY+3))) L=M=H;
if ((E!=B && all_eq4(E,A,C,H,S) && all_eqg2(B,D,F)) && (B!=src(srcX, srcY-3))) J=K=B;
// Triangle tip rules
if (B1<El && all_eq4(E,G,H,I,S) && none_eqg4(E,A,D,C,F)) J=K=B;
if (H1<El && all_eqg4(E,A,B,C,P) && none_eq4(E,D,G,I,F)) L=M=H;
if (F1<El && all_eq4(E,A,D,G,Q) && none_eqg4(E,B,C,I,H)) K=M=F;
if (D1<El && all_eqg4(E,C,F,I,R) && none_eqg4(E,B,A,G,H)) J=L=D;
// 2:1 edge rules
if (H!=B) {
if (H!=A && H!=E && H!=C) {
if (all_eqg3(H,G,F,R) && none_eqg2(H,D,src(srcX+2, srcY-1))) L=M;
if (all_eq3(H,I,D,Q) && none_eq2(H,F,src(srcX-2, srcY-1))) M=L;
}
if (B!=I && B!=G && B!=E) {
if (all_eqg3(B,A,F,R) && none_eqg2(B,D,src(srcX+2, srcY+l))) J=K;
if (all_eg3(B,C,D,Q) && none_eqg2(B,F,src(srcX-2, srcY+l))) K=J;
}
}
if (F!=D) {
if (D!=I && D!=E && D!=C) {
if (all_eqg3(D,A,H,S) && none_eqg2(D,B,src(srcX+l, srcY+2))) J=L;
if (all_eqg3(D,G,B,P) && none_eq2(D,H,src(srcX+l, srcY-2))) L=J;
}
if (F!=E && F!=A && F!=G) {
if (all_eqg3(F,C,H,S) && none_eq2(F,B,src(srcX-1, srcY¥+2))) K=M;
if (all_eq3(F,I,B,P) && none_eq2(F,H,src(srcX-1, srcY-2))) M=K;

Listing 4. MMPX implementation body (GLSL & C++).

97

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

4.3. 1:1 Edges (Lines 19-22)

We call a horizontal, vertical, or diagonally-connected run of pixels of the exact same
value an edge. We call an edge at +45° to horizontal a 1:1 [slope] edge.

Lines 19-22 of Listing 4 recognize 1:1 edges with four rules (if statements) cor-
responding to the four ways an edge can appear adjacent to central pixel . As with
all of the following MMPX rules, we only describe the first because the four patterns
are rotationally symmetric with each other. The first is:

if ((D==B && D!=H && D!=F) && // Adjacent 1:1 edge

(E1>=D1 || E==A) && // Luminance tie-break or thick
feature

any_eq3(E,A,C,G) && // Not a sharp corner

(E1<D1 || A!=D || E!=P || E!=Q)) // Not a single-pixel bump

J=D; // Fill the destination corner along the 1:1 edge

The test expression contains four parenthesized clauses. The first clause is iden-
tical to the corresponding EPX rule from Figure 9. It matches when two diagonal
pixels are identical and are different from both of the opposite diagonal pixels.

The other three clauses are unique to MMPX. These avoid the double refinement
of thick lines and the over-rounding of corners observed under EPX. For a thick line
or large shape with a 1:1 edge, the first clause from EPX will trigger on both sides.
Matching on one side refines a blocky Nearest edge. Matching on both sides restores
the blocky Nearest output, shifted by half a pixel relative to the source. This can be
observed on the 45° rotated central brown box in Figure 14(b). MMPX avoids this
problem by only refining one side. Lacking any other way to break the tie using only a
small kernel, it assumes that the lower luminance/more opaque side is the foreground
feature and refines it at the expense of the higher luminance, background side’s pixels.
In the case of a perfect luminance tie, it fails but still is no worse than EPX.

Note that the first clause does not consider the value of the central source pixel &
itself, which is why EPX undesirably rounds all corners. In MMPX, the third clause
preserves sharp corners by only refining edges where & also matches a of diagonals
that is not part of the edge.

The 4th clause prevents rounding single-pixel bumps that appear on horizontal or
vertical lines of a darker color than the background, such as the tail on a pixel art “4.”

4.4. |Intersections (Lines 25-38)
As depicted in Figure 10, code lines 25-28 connect intersections that the previous
1:1 edge rules leave disconnected. There are two parenthesized clauses. The first
recognizes the inside of a diagonal corner formed by two lines. The second clause
ensures that the pattern is not a notch at the edge of a checkerboard dithering pattern.
Note that in ambiguous cases, the intersection rule does not attempt to break ties
using luminance. That is because doing so at an intersection could disconnect the
wrong feature.

98

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021

MMPX Style-Preserving Pixel Art Magnification https://jcgt.org
P
A c
J
o D | E R . »
L
G I
s

if ((E!=F && all_eq4(E,C,I,D,0Q)&& all_eqg2(F,B,H))&& (F!=src(srcX+3, srcY)))K=

M=F;

Figure 10. The MMPX intersection rule. The gray pixel is necessary to break symmetry and

distinguish intersections from the edge of checkerboard dithering patterns.

Consider the 4x4 pixel region shown on the left of Figure 11, with the goal of com-
puting destination pixel values within the red outline. An artist might
\

interpret the source as depicting a black letter

“R” on a white background and extend the stem
as shown on the top-right subimage. But that in-

terpretation cannot be made objectively given the

local context. The same pixels might depict a

white “SI” on a black background as shown on
the bottom right subfigure; an equally plausible

interpretation in Russian. We designed MMPX

intersection rules to discriminate correctly when

there is clear background on all sides and to in- Figure 11. Is this a black “R” on
tentionally not match when other features are White, or a white “I” on black? Each
nearby (detected by the gray pixel in Figure 10) choice disconnects one feature within
to avoid disconnecting potential features. the red outline.

4.5. Triangle Tips (Lines 31-34)
A triangle’s tip is the positive space, convex corner interpretation of a surrounding
negative space intersection or concave corner. The luminance condition for 1:1 edges
will flatten the tips of bright triangles against dark backgrounds because it refines the
two incoming edges at the intersection. The rules on lines 30-33 depicted in Figure 12
correct for this to restore the corner.

4.6. 2:1 Edges (Lines 36—-58)

As depicted in Figure 13, lines 36-58 of Listing 4 handle 2:1 edges. When it applies,
each 2:1 edge rule copies a pixel value already assigned by a previous rule, rather

99

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

=)

if (B1<El && all_eqg4(E,G,H,I,S)&& none_eqg4(E,A,D,C,F))J=K=B;

Figure 12. A MMPX triangle tip rule.

than directly reading using a source pixel value. They effectively extend the reach of
the 1:1 edge rules by additional pixel. Implicit luminance tie breaks are thus inherited
from previous rules. There are eight ways to copy a pixel horizontally or vertically,
so there are eight 2:1 edge rules.

The first clause of each rule identifies a 2:1 edge of constant color. The second
clause verifies that the edge is separated from every adjacent pixel on one side and
thus not part of a more complex pattern. Common subexpressions from the first clause
are lifted to the two outer tests.

MMPX cannot perfectly refine edges with 3:1 or higher slopes. It will treat those
as a series of stretched 2:1 steps, creating a slightly wiggly result that is better than
previous filter methods but worse than what an artist would produce.

P
A | B C
J | K
N 3 =)
I
S
if (H !==B) { if (H !== A && H !==E && H !== C)
{ // Nothing else matches the edge
if (all_eg3(H, G,F,R) && none_eqg2(H, D,src(srcX+2, srcY-1))) // 2:1 edge

L = M; // Extend the previous 1:1 rule’s reach

Figure 13. A MMPX 2:1 edge rule, which is divided over four statements to lift common

subexpressions from the other symmetric 2:1 rules not shown here.

100

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

5. Qualitative Evaluation

The Nearest, EPX, XBR, and MMPX filters preserve palette by construction, so we
evaluate other elements of style preservation in detail here. Our supplement contains
additional results from non-palette preserving HQX, XBR-Antialiased, Bilinear, and
Unbiased Bilinear filters. The input image is the same as Nearest at half resolution,
so we do not show it in the result figures. All results can be reproduced by running
js—demo.html from our supplement in a web browser and then dragging the test
images onto the page (also at https://morgan3d.github.io/quadplay/tools/scalepix.html).

Figure 14 shows results on a pixel art magnification filter test image by Stepin
[2003]. It covers a variety of difficult cases. On the right half of the image, a series of
brown squares at different orientations on a green background test all combinations of
1:1 and 2:1 edges on large features. MMPX refines these all ideally. EPX and XBR
fail on the 1:1 edges because they process both the brown and green sides; double-
refinement yields a shifted Nearest result. They succeed on the 2:1 edges because they
add one pixel on each side. None of the filters processed 30°- and 60°-rotated box
corners well. EPX and MMPX over-round slightly, and XBR skews and incorrectly
rounds.

MMPX retains the sharp corners of the brown axis-aligned boxes and the convex
and concave corners of the black-on-yellow features on the left side that EPX and

XBR incorrectly round.

o [<
=X w
OE9
|:!-_¢>:o:

(b) EPX

0O Bl = f
$xxXs9 [

oF

|:I-_ ¢ o

(c) XBR d) MMPX

Figure 14. Comparison of four filters on the pixel-art magnification test image by
Stepin [2003]. Examine the 2:1 and 1:1 edges on the brown boxes, the corners and curves,
and intersections in the blue line patterns. All methods round the 30°-rotated box corners
and MMPX produces inconsistent thickness for the 2:1 stripes in the center because of its
luminance tie-break. MMPX performs better than the others for most other patterns and does

particularly well on the red heart outline, ampersand, and diamonds.

101

https://jcgt.org
https://morgan3d.github.io/quadplay/tools/scalepix.html

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

All three filters refine the 2:1 edges of the 2-pixel thick colored stripes in the
center well. MMPX produces stripes of different thickness because its luminance tie
break prefers dark blue over bright yellow.

On the black-on-yellow happy face and the blue curves, MMPX and XBR produce
highly refined curves. EPX falls back to Nearest for these. On the black ampersand
and red heart, only MMPX correctly refines both the curves and lines.

EPX is better than XBR at refining the straight blue lines and shapes, but it discon-
nects their intersections. MMPX handles both the line refinement and intersections
well. Its result is not as good for the blue double-arrow heads, however.

All three filters preserve the checkerboard pattern by falling back to Nearest. Only
more context and an artist’s intention could distinguish whether it is a dither pattern
that refined to single pixels or a checkerboard to magnify to 2 x 2 pixel squares.

We created the binary image in Figure 15 to test all of the style-preservation crite-
ria listed in Section 1.2. For each feature, it contains both black-on-white and inverse
versions so that the luminance tests in MMPX have no advantage.

The properties observed for each of the filters are consistent with the previous
example. MMPX handles lines of varying thickness and slope well, refines curves,
keeps both convex and concave corners sharp, and maintains intersections properly.
XBR is equally good on curves and 2:1 edges, but rounds all corners and cannot
handle 1:1 edges. EPX is poor on 1:1 edges, 2:1 thin lines, intersections, and curves,
and rounds everything.

The brick and grid patterns on the right of the test image show MMPX’s corner
preservation very clearly over the other methods.

Within the thin line examples, note that MMPX preserves the single-pixel bumps
on horizontal and vertical lines that EPX and XBR both thicken and round.

Because of the luminance rules, for certain size disks MMPX produces better
results for black on white instead of white on black. EPX and XBR are consistently
good for both because for disks, rounding everything is the ideal strategy. Note that
if the white disks were filtered individually as sprites on a transparent background,
MMPX would produce equally good results.

MMPX shows a strong advantage for text. That combines the cases for which
it performs better than the other methods with a scenario where small changes can
radically affect readability and perception of shape. For both the labels such as “DI-
AMONDS” and the explicit text and symbol area on the lower right of the test image,
MMPX better captures the style of various fonts and preserves readability. EPX and
XBR’s rounding and poor 1:1 edge handling here can make a “D” look like an “O”
for EPX, or destroy the art deco style of “ABCDE” and curves of “S” under XBR.

Figure 16 shows results on a spritesheet containing sprites in various pixel-art
styles by ourselves and others. For this evaluation, we magnified and filtered the
spritesheet with transparency and then composited it onto the gray background for

102

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021

MMPX Style-Preserving Pixel Art Magnification https://jcgt.org
THIN LINEZ THICK LINE: CURUES EOREZ FATTERNZ
SN ANNE R M “mic 0 &
=1+ =N+ Hwp o

="t +
DISKS DIAMONDS

2:80 63

Nearest
THIn LINES THICK LINES CURVES BOKES PATTERNS

St X AN X esgo O
L3R L0 F %y a8 i
A AFANYE .
AN AN AR N2

DISKS oIAMONDS

TERT
N 3 * L b d t
'..’0. .""O‘O F':IQBI gu['l)'.'E: ush g\'? DrE?G Egiff%’wCNE

EPX
THIh LIRES THICK LIRES CURVEZS EORES

Pl ANSE K sep O i
ZE LN st a2l

LU0 2SR)

DIZR% PIAMONDS

TEXT
N 2 * »t t
...?+. +*‘{}“:’ F':IQBI gu?:E: ush g\'? D‘-EE;G Egiff%’mfié

Je * . * 1K L HE
2600 0.8, NBECDE® tparstIKLHN

ISorzsuse BeOEro 1234 5PACE
XBR
THIN LINES THICH LINES CURVES EOXES PATTERNS

St X ZNSEX

Z3IR LN e
AT TTH]
Z3NE Ry gnlzB i

DISHS DIAMONDS

-
=X
-8

TERT)
K) L/ L ¥ t
2:.00 %68 [DCDE®TparstigK

PQISo1zauze BCDEFrG 1234 5P

0.;.. ’ 0’0’0 PQIS

=
™
"

MMPX

Figure 15. Comparison of four filters on an image we designed to test style preservation of edges, curves, lines,
patterns, and intersections. In the case of light disks on a dark background, the MMPX luminance rules produce
under-smoothed results, while the over-smoothing of EPX and XBR happens to match the desired outcome better
in this case. In all other situations, MMPX generally preserves style better than the other filters, notably at sharp

corners, intersections, 2:1 edges, and the thin features found in text.

103

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

sy
%~

n
o) O
%
Ca O

>
kSCa N
Piikd e©fikd

ke S

= i «
3

3@“ <

Ry |

3

B +x@

L

B »x
> K o
'J"'\::-
D 3 51

jes!
I
>

Nearest
R

S

e

Iiﬁ)lﬂ

o i e
ok T il <

‘ﬁ_’DE]

I
P

fir il «

3 Jo IR

CiRd Ciilkd

2N

4

B X
>
> %N

XBR MMPX

Figure 16. Spritesheet with transparency magnified with various filters. MMPX best
smoothes the silhouettes of the characters, preserves the sharp corners on the blue bricks,
maintains the intersection in the X’s on the top right, and preserves the single-pixel eyes of
the green ninja.

Top row of 8 x 8 PICO-8 sprites by Morgan McGuire 2020 in the Public Domain; Green Ninja by
DezrasDragons 2015 in the Public Domain https://opengameart.org/content/ninja-animated; Large
Red Imp (©2012, Redshrike & William Thompson CC-BY 3.0 htips://opengameart.org/content/Ipc-
imp; Gold and gray UI elements (©)2013 Buch CC-BY-SA 3.0 https://opengameart.org/content/golden-
ui-bigger-than-ever-edition; 8x8 roguelike sprites by Morgan McGuire & Kenney.nl 2020 in the
Public Domain; 16x16 dungeon sprites (©2014 Dragon De Platino & DawnBringer CC-BY 4.0

https://opengameart.org/content/dawnlike-16x16-universal-rogue-like-tileset-v181

display. EPX and XBR produce better rounding than MMPX on the turtle shell,
and each method has a different undesirable outcome for the white arrow. For all
other cases, MMPX performs as well or better than EPX and XBR. Note in particular
MMPX’s correct handling of the “X” in the upper-right corner, sharp bricks and coffin
cross, the eyes of the green ninja, and the refinement of the demon’s curved wings.
Figure 17 shows our variation of the RotSprite algorithm using each of the filters
for magnification and Nearest for minification. EPX, XBR, and MMPX produce sim-
ilar results and all are significantly better than Nearest. We prefer MMPX slightly
for keeping the TV antennae connected, fewer stray pixels on the silhouette of the
spaceship, and consistently maintaining the gray outline on the green monster skull.

104

https://jcgt.org
https://opengameart.org/content/ninja-animated
https://opengameart.org/content/lpc-imp
https://opengameart.org/content/lpc-imp
https://opengameart.org/content/golden-ui-bigger-than-ever-edition
https://opengameart.org/content/golden-ui-bigger-than-ever-edition
https://opengameart.org/content/dawnlike-16x16-universal-rogue-like-tileset-v181

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

@ W % B & B
® W
‘ W
@

@
® v

b . W e
P9+ 69 PVo e

(c) XBR (d) MMPX

8 é 'u("?
1 ‘ {\?’
% O WV
®

W

®REG $ @
® K & @
$ & © W

A 2 % INE X 3

o

~

(a) Nearest (b) EPX

8
w

@ W

e

&
heisw SHée
Som | FP

® @ @
e # wm
®R & $ @

g
%
A
8
s
°
“

Figure 17. Rotation of sprites with transparency using RotSprite with different magnification
filters. All other filters are much better than Nearest. MMPX preserves the thin TV antennae
and spaceship silhouette slightly better than the other filters in these examples.

TV (©2004 LucasVB CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File:Pixelart-tv-iso.png;
Spaceship by Kenney.nl 2016, in the Public Domain https://opengameart.org/content/space-shooter-
extension-250; King by Buch 2014, in the Public Domain https://opengameart.org/content/a-platformer-
in-the-forest; Skull (©2015 Lunarsignals, CC-BY-SA 3.0 https://opengameart.org/content/overhead-
action-rpg-forest; Hat from Dungeons of Dredmor, ©2011 Gaslamp Games. Used with permission
Jfrom Nicholas Vining for this research paper. Redistribution and further use is prohibited; Sports car by
Morgan McGuire 2020, in the Public Domain.

Figures 18 and 19 show that the filter behaviors we examined through isolated
test cases are consistently maintained in complex whole-screen images. These show a
screenshot from a pixel-art game and a standalone artwork in which MMPX produces
good results for the varying edge slopes, sharp corners, and intersections.

105

https://jcgt.org
https://commons.wikimedia.org/wiki/File:Pixelart-tv-iso.png
https://opengameart.org/content/space-shooter-extension-250
https://opengameart.org/content/space-shooter-extension-250
https://opengameart.org/content/a-platformer-in-the-forest
https://opengameart.org/content/a-platformer-in-the-forest
https://opengameart.org/content/overhead-action-rpg-forest
https://opengameart.org/content/overhead-action-rpg-forest

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

Nearest EPX

XBR MMPX

Figure 18. Crop of a full-screen game image magnified with different filters. Bear the Gobblins
(©2019 Stephan Steinbach, used with permission

106

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

066666
16666666664
0 60666666664

2232222222
22322222322

22222228
v 96666664
2222222222
2222222222
PHDOOHSHSD

o

o

Nearest EPX

. ALl

XBR MMPX

Figure 19. Crop of a full-screen pixel-art image processed with Nearest, EPX, XBR, and
MMPX. ©2013 Sharm, CC-BY 3.0 https://opengameart.org/content/Ipc-arabic-elements

107

https://jcgt.org
https://opengameart.org/content/lpc-arabic-elements

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

(a) White text (b) Black text

ElG

(c) Nearby features (d)Varying background

Figure 20. (a, b) Independent of luminance or alpha, the MMPX rules produce ideal results
on the “R” test when the foreground is unambiguous because it is surrounded by a consistent
background. This occurs in a font sheet or spritesheet. (c, d) Where the local neighborhood
leaves foreground and background ambiguous, MMPX conservatively falls back to Nearest at

those pixels. This can occur in full-screen images.

Figure 20 shows MMPX results on the ambiguous positive/negative space “R”
test case that we used to motivate the intersection rules. When there are no other
features near the ambiguous intersection, as in (a) and (b), the rules refine the leg of
the “R” as an artist would. This case occurs in font sheets, and is an example of why
processing the input prior to rendering is preferable to processing the output. When
other features are nearby as in (c) it falls back to Nearest because a much larger (and
thus slower and more complex) kernel would be needed to discriminate foreground
from background. In truly ambiguous cases such as (d), Nearest is the best objective
result so the rules fall back to it.

We stress that while the results in this section showed that MMPX can improve on
the quality of Nearest, EPX, and XBR for general pixel art, for any specific asset, one
filter might be better than another. The LucasArts games often contained fonts and
sprites for which EPX’s rounding is superior, and for full-screen, high-color pixel art
HQX and XBR-AA can be more consistent with style. One could imagine designing
filter rules using the strategies of MMPX tailored to a particular artist or game.

6. Performance Evaluation

The measurements in Table 1 demonstrate that MMPX is within the same perfor-
mance range as alternative pixel-art magnification filters. Our supplement includes
C++, JavaScript, and GLSL versions of MMPX and selected previous filters to which

108

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

we compare it, as well as the profiling code used in these experiments. We choose
those three languages because they are the common source languages for emulators
and pixel-art tools. Note that GLSL shaders can be run from OpenGL ES on an em-
bedded processor or mobile, from WebGL in a browser, or from desktop OpenGL
or Vulkan. We did not evaluate C++ compiled to WebAssembly because the perfor-
mance in that case will be bracketed by native C++ and JavaScript.

We implemented Nearest, MMPX, and EPX ourselves. We used the following
popular, open source implementations of XBR and HQX.

XBR: JS Josep del Rio 2020 https://github.com/joseprio/xBRjs
C++ Treeki 2015 https://github.com/Treeki/libxbr-standalone
GLSL Hyllian 2016 https://github.com/libretro/glsl-shaders/blob/master/xbr

HQX: JS Eliastik 2015 https://github.com/Eliastik/javascript-hqx
C++ Treeki 2015 https://github.com/Treeki/libxbr-standalone
GLSL Jules Blok 2014 https://github.com/CrossVR/hgx-shader

JavaScript RPi Nano Netbook Laptop Desktop
Nearest 3.7 34 1.0 1.2 0.7
EPX 63 102 29 33 2.0
MMPX 140.5 1264 32.7 39.9 25.3
HQX 215.7 229.7 52.6 58.7 36.4
XBR 4653 491.8 135.7 144.4 91.5
C++

Nearest 3.0 0.6 0.3 0.7 0.3
EPX 43 5.8 2.6 3.1 1.6
MMPX 157 232 7.4 9.1 4.9
HQX 836.3 5169 96.0 130.5 71.2
XBR 841.7 526.3 100.5 130.0 71.4

[GLSL |

Nearest® N/A 0.170 0.050 0.015 0.004
Nearest” N/A 0.202 0.085 0.019 0.005
EPXC N/A 0.317 0.076 0.019 0.004
MMPX® N/A 0.955 0.156 0.039 0.005
HQXP N/A 2.631 N/A 0.159 0.025
XBRF N/A 3457 0986 0.204 0.038

Table 1. Performance in nanoseconds per pixel (lower is better), measured over 50 CPU trials
on 512 x 512 input and 5000 GPU trials on 1024 x 1024 input, after cache and JIT warmup.
For context, 57ns/pix is the throughput required to scale a SNES 256 x 240 full screen to
512 x 480 in 1ms per frame. “P” = pixel shader, “C” = compute shader. “N/A” = entry is not
applicable because RPi does not support GPU timing and the HQX OpenGL ES shader does
not compile on Intel or Broadcom GPUs.

109

https://jcgt.org
https://github.com/joseprio/xBRjs
https://github.com/Treeki/libxbr-standalone
https://github.com/libretro/glsl-shaders/blob/master/xbr
https://github.com/Eliastik/javascript-hqx
https://github.com/Treeki/libxbr-standalone
https://github.com/CrossVR/hqx-shader

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

The README . md file in the source code supplement for this paper gives the full
copyright information for these implementations.

These implementations (including our own) are designed for readability and easy
porting between the many platforms on which emulators, educational software, and
fantasy consoles must run. So, they do not explicitly use CPU threading, platform-
specific CPU SIMD features such as SSE and AVX, or GPU features beyond base
specification OpenGL ES 3.1.

We measured GPU execution time with a c1._t1Me_r1apsep query, native CPU C++
execution time with std: :chrono: :system_clock: :now() on Visual Studio (Windows)
and clang++ (Linux), and CPU JavaScript time with performance.now () in Chrome
86. In each case, we processed a 512 x 512 input image 50 times and then reported
time per output pixel in nanoseconds for the 67 million output pixels computed. We
warmed caches and shader JITs by running the full test multiple times and recording
only the final 50-image run.

Our test image combines diverse Creative Commons pixel-art sprites, fonts, and
full-screen images to cover all branches from the algorithms.

HQX is very slow for the JIT to compile in JavaScript. The first few executions
can take seconds or minutes as a result. The numbers here are after the JIT has
compiled and when timing is at steady state.

Note that the Native C++ XBR and HQX implementations from the third-party
libXBR are slower than the JavaScript implementations on many platforms. We be-
lieve that it is possible to implement those algorithms more efficiently in C++.

However, identifying the fastest XBR and HQX implementations is beyond the
scope of this paper. For peak performance the GLSL implementations are the most
interesting, and regardless, the goal of these experiments is only to show that MMPX
is well within the performance profile of some available implementations already in
production use for emulators, which it clearly is.

On all platforms MMPX is fast enough to operate within a sprite renderer for
scaling and rotation of small numbers of sprites. It can be applied for load-time
MIP-map generation at negligible additional cost over disk/network access and image
decompression, and it is fast enough to use within an interactive content-creation tool
even for megapixel images. On every platform configuration except JavaScript on
the embedded systems, MMPX can process runtime SNES-resolution full frames in
less than a millisecond. Even on RPi, MMPX can process a full SNES frame in two
milliseconds in a browser, which is sufficient for real-time emulators because that
4-core processor can run the magnification on a separate one from the game.

7. Conclusions

MMPX addresses a niche problem in computer graphics in a way that is practical
and interesting. We hope that it also provides insight into the challenges and conven-

110

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

tions of drawing recognizable features at small scales and demonstrates how sensitive
the eye is to slight rounding or squaring of features in the abstracted style of pixel
art. MMPX has already proven useful for over a year as a tool for the quadplay+
and PICO-8 fantasy consoles. It provides another magnification-filter option for the
many pixel-art indie game titles, retro re-releases from major vendors, and pixel-art
content-creation tools that use its predecessors such as EPX and HQX. We intend the
observations on pixel-art filtering, test data, and evaluation methodology in this paper
as a resource supporting further innovation in this area.

Having worked with the filtering problem for some time, we remain in awe of
EPX’s economy. It produces significant quality from its four simple rules, and we
needed much more complexity to address the cases in which one can do better than
EPX. While we believe additional rules for further improving filtering quality await
discovery, that discovery will not be easy. We attempted and rejected many rules
as too expensive to justify the diminishing increase in quality beyond what MMPX
currently achieves on top of EPX.

Designing the algorithm to run efficiently under the four different processing
models of interpreted JavaScript, native C++, full OpenGL, and OpenGL ES for em-
bedded systems was a significant challenge. We found that we needed per-platform
optimizations for reading and writing pixels efficiently. Yet, we were able to create
a single algorithm body that runs efficiently on all four targets and remains elegant,
relatively understandable, and free of data or library dependencies.

There are a few interesting limitations and directions for future work on this prob-
lem. For 1:1 slopes, we were able to avoid luminance bias on thin stripes by corre-
sponding downstream patterns. However, that necessarily created inconsistency be-
tween the filtering of light and dark disk shapes that we showed as an undesirable
result in Figure 15 and varying stripe thickness in Figure 14. We have not yet found a
set of patterns that can efficiently avoid this bias for 2:1 edges, or a better way to break
ties between opaque pixels than by luminance. For example, we rejected breaking ties
by pixel position because it destroys translation invariance and causes shapes to crawl
as they move across the screen and disrupts the slope of diagonal lines. An ideal mag-
nification filter would detect and maintain special pixel-art conventions for individual
pixels, such as dither patterns and single-pixel outlines. Doing so for specific colors
(e.g., black) or uniform dithering is relatively easy, but recognizing arbitrary outline
colors and dithered gradients is challenging.

As in most previous work, MMPX operates as a single-pass filter with a fixed
maximum kernel size. This simplifies the implementation and gives predictable per-
formance. An inherent limitation of this is that it is sometimes ambiguous which color
is positive space/foreground when only looking at the context of the small kernel.
Our solution has three parts: 1) apply the heuristic that dark is foreground and light
is background within the algorithm, 2) recommend magnifying font and spritesheets

111

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

instead of the final image to increase the chance encountering of an isolated figure
surrounded by transparent pixels, and 3) do no harm.

The heuristic that dark indicates positive space is motivated by the observation
that many games use dark text on light backgrounds and black outlines around sprites.
For a given set of content, the luminance tests can of course be inverted, as we do in
our JavaScript demo application when a binary font sheet is detected with a black
background instead of one with a transparent or white background. To avoid “doing
harm,” in situations as in Figure 11, where heuristically preferring one color over
another would disconnect a feature of the other color, MMPX simply does nothing
and falls back on Nearest.

An alternative approach for future work is to abandon the fixed kernel size or to
make multiple passes when resolving ambiguous patterns. For example, one could
adopt techniques from post-process antialiasing methods such as MLAA and FXAA
(see the survey by Jimenez et al. [2011] and Getreuer et al.’s [2011]) to search along
feature edges and adaptively extend the kernel as needed.

Deep neural networks have proven exceptionally well-suited to image inpainting
and superresolution problems, albeit for natural images with large, labelled training
sets. There are some reasons to think that DNNs are a poor fit for the style-preserving
pixel-art scaling problem when applied in the same way. Large amounts of hand-
scaled pixel art are not available for supervised training. The cases where DNNs
succeeded at image filtering tended to be ones where the pixel values were on a con-
tinuous, interpolatable range with large features. For a limited palette and single-pixel
features, we speculate that previous networks designed for natural images will signif-
icantly overblur.

However, other machine-learning methods have excelled at binary segmentation
and classification problems. If we pose pixel-art scaling as classifying which pixels
are art of the same feature (similar to how EPX and MMPX operate), then DNNs may
be a good choice. A separate challenge with DNNs for this problem is bandwidth.
MMPX reads only about four input pixels per output pixel due to amortization and a
small working-set size that fits into CPU stack or GPU registers. In contrast, a typical
DNN will use hundreds or thousands of weights, connections, and inputs per pixel.

Scaling by 2x is the smallest integer ratio on which to build a MIP chain, and it
maintains efficient power-of-two sprite sizes. As with most previous filters, MMPX
can perform 4x scaling by simply running the 2x magnification process twice. Al-
though less common, 3x scaling could be desirable to provide better intermediate
stages for sprite and font zooming. HQX has a native 3x scaling alternative that is a
different filter from its 2x variant, and we believe that a MMPX variant specifically
designed for 3 x is worth investigation. In some ways, 3 X is easier: every 3 X 3 output
tile has a center pixel that is copied directly from the source, which avoids some of
the directional biasing problems that we had to resolve at 2x. However, all of the

112

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

typedef uint32_t ABGRS;

inline ABGR8 src(int x, int y) {
// Use a single branch because clamping is only needed rarely, and
// perform an unsigned test so that negatives wrap around and fail.
if (uint32_t (x) > uint32_t (srcMaxX) || uint32_t(y) > uint32_t (srcMax¥)) {
x = clamp(x, 0, srcMaxX); y = clamp(y, 0, srcMaxy);
}

return srcBuffer[y * srcWidth + x];

for (int srcY = 0; srcY < srcHeight; ++srcY) {
int srcX = 0;

// Inputs carried along rows

ABGR8 A = src(srcX-1l, srcY-1l), B = src(srcX, srcY-1l), C = src(srcX+l,
srcY-1),
D = src(srcX-1l, srcY+0), E = src(srcX, srcY+0), F = src(srcX+l,
srcY+0),
G = src(srcX-1l, srcY+l), H = src(srcX, srcY¥+l), I = src(srcX+l,
srcY+1);

ABGR8 Q = src(srcX - 2, srcY), R = src(srcX + 2, srcY);

for (srcX = 0; srcX < srcWidth; ++srcX) {

// ...main body here...

int dstIndex = ((srcX + srcX) + (srcY << 2) x srcWidth) >> 0;
ABGR8* dstPacked = (ABGR8x)dst + dstIndex;

*dstPacked = J; dstPacked++;

+*dstPacked = K; dstPacked += srcWidth + srcMaxX;

*dstPacked = L; dstPacked++;

*dstPacked = M;

A =B; B=2C; C= src(srcX + 2, srcY - 1);

Q =D; D =E; =F; F=R; R= src(srcX + 3, srcY);

G =H; H=1I; I = src(srcX + 2, srcY + 1);

Listing 5. Single-threaded scalar C++ framework.

neighborhood rules we introduced would have to be reconsidered specifically for the
case of the nine outputs per input pixel.

Acknowledgements

We thank Peter Shirley for editing this manuscript.

113

https://jcgt.org

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

#version 310 es
#define ABGR8 uint

layout (local_size_x = 8, local_size_y = 8) in;

layout (std430, binding = 0) restrict writeonly buffer outputBuffer {
ABGR8 dst_buffer([];
bi

layout (std430, binding = 1) restrict readonly buffer inputBuffer {
ABGR8 src_buffer([];
i

uniform ivec2 dst_size;
uniform ivec2 src_size;
uniform ivec2 src_max;

// Read a source pixel, clamping to bounds
ABGR8 src(int x, int y) {
return src_buffer[clamp(x, 0, src_max.x) + clamp(y, 0, src_max.y) *
src_size.x];

void main () {
int srcX = int (gl_GlobalInvocationID.x), srcY = int (gl_GlobalInvocationID

-Y)i
ABGR8 A = src(srcX-1, srcY-1l), B = src(srcX, srcY-1), C = src(srcX+l,
srcY-1),
D = src(srcX-1, srcY+0), E = src(srcX, srcY+0), F = src(srcX+l,
srcY+0),
G = src(srcX-1l, srcY+l), H = src(srcX, srcY+l), I = src(srcX+l,
srcY+1);

// ...main body here...

// Write four pixels at once

int dst_index = 2 % srcY * dst_size.x + 2 x srcX;
dst_buffer[dst_index] = J; ++dst_index;
dst_buffer[dst_index] ; dst_index += dst_size.x - 1;
dst_buffer[dst_index] = L; ++dst_index;
dst_buffer[dst_index]

= H xR g

’

Listing 6. GLSL compute shader framework.

References
BURNES, A., 2020. NVIDIA DLSS 2.0: A big leap in Al rendering, March.
Blog Post. URL: https://www.nvidia.com/en-us/geforce/news/

nvidia-dlss—-2-0-a-big-leap-in—-ai-rendering/. 90

COEURIJOLLY, D., GUETH, P., AND LACHAUD, J.-O. 2018. Regularization of voxel art.
In ACM SIGGRAPH 2018 Talks, Association for Computing Machinery, New York, NY,

114

https://jcgt.org
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/
https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

USA, SIGGRAPH *18. URL: https://doi.org/10.1145/3214745.3214748.
92

DAl1, D., TIMOFTE, R., AND VAN GooOL, L. 2015. Jointly optimized regressors for
image super-resolution. Computer Graphics Forum 34, 2, 95-104. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12544. 90

GATYS, L. A., ECKER, A. S., AND BETHGE, M., 2015. A neural algorithm of artistic style.
URL: https://arXiv.org/abs/1508.06576, arXiv:1508.06576. 92

GETREUER, P. 2011. Contour stencils: Total variation along curves for adaptive image
interpolation. SIAM Journal on Imaging Sciences 4, 3, 954-979. URL: https://doi.
org/10.1137/100802785. 112

GLASSNER, A. 2015. Interpreting alpha. Journal of Computer Graphics Techniques (JCGT)
4,2 (May), 30-44. URL: http://jcgt.org/published/0004/02/03/. 89

HAN, C., WEN, Q., HE, S., ZHU, Q., TAN, Y., HAN, G., AND WONG, T.-T. 2018. Deep
unsupervised pixelization. ACM Trans. Graph. 37,6 (Dec.). URL: https://doi.org/
10.1145/3272127.3275082. 92

HYLLIAN, 2011. Xbr. URL: https://github.com/Hyllian/glsl-shaders/
blob/master/xbr/shaders/xbr-1v2.glsl. 91

JIMENEZ, J., GUTIERREZ, D., YANG, J., RESHETOV, A., DEMOREUILLE, P., BERGHOFF,
T., PERTHUIS, C., YU, H., MCGUIRE, M., LOTTES, T., MALAN, H., PERSSON, E.,
ANDREEV, D., AND SousA, T. 2011. Filtering approaches for real-time anti-aliasing. In
ACM SIGGRAPH Courses. Association for Computing Machinery, New York, NY, USA.
URL: https://doi.org/10.1145/2037636.2037642. 112

JOHNSTON, E., 1992. EPX. Algorithm in the Macintosh port of the LucasArts SCUMM VM
engine, Lucas Arts. 90, 94

KoPF, J., AND LISCHINSKI, D. 2011. Depixelizing pixel art. ACM Transactions on Graphics
(Proceedings of SIGGRAPH 2011) 30, 4, 99:1 —99:8. URL: https://doi.org/10.
1145/2010324.1964994. 92

KREUZER, F., KOPF, J., AND WIMMER, M. 2015. Depixelizing pixel art in real-time.
In Proceedings of the 19th Symposium on Interactive 3D Graphics and Games, i3D ’15.
Association for Computing Machinery, New York, NY, USA, 130. URL: https://doi.
0rg/10.1145/2699276.2721395. 92

LORENSEN, W. E.; AND CLINE, H. E. 1987. Marching cubes: A high resolution 3d sur-
face construction algorithm. SIGGRAPH Comput. Graph. 21, 4 (Aug.), 163—-169. URL:
https://doi.org/10.1145/37402.37422. 90

MAZZOLENI, A., 2001. Scale 2x. Website visited 2020-01-01. URL: https://www.
scale2x.it/. 90, 94

PARk, T., Liu, M., WANG, T., AND ZHU, J. 2019. Semantic image synthesis with
spatially-adaptive normalization. URL: https://arXiv.org/abs/1903.07291,
arXiv:1903.07291. 92

115

https://jcgt.org
https://doi.org/10.1145/3214745.3214748
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12544
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12544
https://arXiv.org/abs/1508.06576
https://doi.org/10.1137/100802785
https://doi.org/10.1137/100802785
http://jcgt.org/published/0004/02/03/
https://doi.org/10.1145/3272127.3275082
https://doi.org/10.1145/3272127.3275082
https://github.com/Hyllian/glsl-shaders/blob/master/xbr/shaders/xbr-lv2.glsl
https://github.com/Hyllian/glsl-shaders/blob/master/xbr/shaders/xbr-lv2.glsl
https://doi.org/10.1145/2037636.2037642
https://doi.org/10.1145/2010324.1964994
https://doi.org/10.1145/2010324.1964994
https://doi.org/10.1145/2699276.2721395
https://doi.org/10.1145/2699276.2721395
https://doi.org/10.1145/37402.37422
https://www.scale2x.it/
https://www.scale2x.it/
https://arXiv.org/abs/1903.07291

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

REBOUAS SERPA, Y., AND FORMICO RODRIGUES, M. A. 2019. Towards machine-learning
assisted asset generation for games: A study on pixel art sprite sheets. In 2019 18th
Brazilian Symposium on Computer Games and Digital Entertainment (SBGames), 182—
191. URL: https://ieeexplore.ieee.org/document/8924853. 92

SALVI, M., PATNEY, A., LEFOHN, A. E., AND BRITTAIN, D. L., 2017. Temporally stable
data reconstruction with an external recurrent neural network, 7. US Patent Application
20190035113A1. 90

STASIK, P. M., AND BALCEREK, J. 2017. Improvements in upscaling of pixel art. In 2017
Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA).
IEEE, Washington, dC, USA, 371-376. URL: https://ieeexplore.ieee.org/
document /8166895. 91

STEPIN, M., 2003. hq2x, October. Website. URL: https://web.archive.org/web/
20131205091805/http://www.hiend3d.com/hg2x.html. 90, 101

THOMAS, K. 1999. Fast blit strategies: A mac programmer’s guide. MacTech 15,
6. URL: http://preserve.mactech.com/articles/mactech/Vol.15/
15.06/FastBlitStrategies/index.html. 90

TomasI, C., AND MANDUCHI, R. 1998. Bilateral filtering for gray and color im-
ages. In Sixth International Conference on Computer Vision (IEEE Cat. No.9SCH36271).
IEEE, Washington, DC, USA, 839-846. URL: https://ieeexplore.ieee.org/
document/710815. 89

TURKOWSKI, K. 1990. Filters for Common Resampling Tasks. Academic Press Profes-
sional, Inc., Cambridge, MA, USA, 147-165. URL: https://dl.acm.org/doi/
10.5555/90767.90805. 89

XENOWHIRL, 2007. Sprite rotation utility, Jan. Sonic Retro forum thread. URL:
https://web.archive.org/web/20210506191421/https://forums.
sonicretro.org/index.php?threads/sprite—-rotation-utility.

8848/. 86,91

XI1AO, L., NOURI, S., CHAPMAN, M., F1x, A., LANMAN, D., AND KAPLANYAN, A.
2020. Neural supersampling for real-time rendering. ACM Trans. Graph. 39, 4 (July).
URL: https://doi.org/10.1145/3386569.3392376. 90

Index of Supplemental Materials
The supplemental materials as described below can be foundathttp://jcgt.org/published/
0010/02/04/supplement.zip.

tests/ Source images used for all tests. The license.txt file gives copyrights and
licenses for all content.

results/ Selected MMPX, Nearest, EPX, XBR, XBR-Antialiased, Biased Bilinear, Un-
biased Bilinear, Bicubic, and HQX results. js—demo.html can produce additional
results.

116

https://jcgt.org
https://ieeexplore.ieee.org/document/8924853
https://ieeexplore.ieee.org/document/8166895
https://ieeexplore.ieee.org/document/8166895
https://web.archive.org/web/20131205091805/http://www.hiend3d.com/hq2x.html
https://web.archive.org/web/20131205091805/http://www.hiend3d.com/hq2x.html
http://preserve.mactech.com/articles/mactech/Vol.15/15.06/FastBlitStrategies/index.html
http://preserve.mactech.com/articles/mactech/Vol.15/15.06/FastBlitStrategies/index.html
https://ieeexplore.ieee.org/document/710815
https://ieeexplore.ieee.org/document/710815
https://dl.acm.org/doi/10.5555/90767.90805
https://dl.acm.org/doi/10.5555/90767.90805
https://web.archive.org/web/20210506191421/https://forums.sonicretro.org/index.php?threads/sprite-rotation-utility.8848/
https://web.archive.org/web/20210506191421/https://forums.sonicretro.org/index.php?threads/sprite-rotation-utility.8848/
https://web.archive.org/web/20210506191421/https://forums.sonicretro.org/index.php?threads/sprite-rotation-utility.8848/
https://doi.org/10.1145/3386569.3392376
http://jcgt.org/published/0010/02/04/supplement.zip
http://jcgt.org/published/0010/02/04/supplement.zip

Journal of Computer Graphics Techniques Vol. 10, No. 2, 2021
MMPX Style-Preserving Pixel Art Magnification https://jcgt.org

code/

js—demo.html HTML/JavaScript single-file interactive demo, reference implementa-
tion, and profiling harness for MMPX, Nearest, EPX, XBR, XBR-AA,
HQX, Unbiased Bilinear, and Biased Bilinear
libxbr/ C++ implementation of XBR
data-files/ GLSL implementations of MMPX, Nearest, Bilinear, EPX, XBR, and
HQX
source/
hg2x.c C++ implementation of HQX

cppPerf.cpp C++ implementations of MMPX, Nearest, Bilinear, and
EPX, and the C++ profiling harness

glslPerf.cpp C++ profiling harness for GLSL code

Author Contact Information

Morgan McGuire Mara Gagiu

University of Waterloo University of Waterloo

200 University Avenue West 200 University Avenue West
Waterloo, ON, Canada N2L 3G1 Waterloo, ON, Canada N2L 3G1
morgan @casual-effects.com mara.gagiu@uwaterloo.ca

https://casual-effects.com

McGuire and Gagiu, MMPX Style-Preserving Pixel Art Magnification, Journal of Computer
Graphics Techniques (JCGT), vol. 10, no. 2, 83-117, 2021
https://jcgt.org/published/0010/02/04/

Received: 2021-01-26
Recommended: 2021-04-29 Corresponding Editor: Angelo Pesce
Published: 2021-06-30 Editor-in-Chief: Marc Olano

(© 2021 McGuire and Gagiu (the Authors).

The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

117

https://jcgt.org
mailto:morgan@casual-effects.com
https://casual-effects.com
mailto:mara.gagiu@uwaterloo.ca
https://jcgt.org/published/0010/02/04/
http://creativecommons.org/licenses/by-nd/3.0/

