
Journal of Computer Graphics Techniques Vol. 11, No. 1, 2022 http://jcgt.org

Real-Time Shading with Free-Form Planar Area
Lights Using Linearly Transformed Cosines

Takahiro Kuge
Waseda University

Tatsuya Yatagawa
The University of Tokyo

Shigeo Morishima
Waseda University

(b) (c)(a)

Figure 1. Rendering results for free-form planar area lights using our method. All of the
results are obtained in real time using standard graphics hardware. Our method supports light
sources that are (a) non-convex with internal holes and (b) in the shape of a character, provided
that the contour is defined by a set of Bézier curves. We can also define (c) spatially varying
light colors using a texture. The roughness, α, of the floor is 0.1 for (a) and 0.25 for (b), while
it is driven by a checkerboard texture in (c).

Abstract

This article introduces a simple yet powerful approach to illuminating scenes with free-form
planar area lights in real time. For this purpose, we extend a previous method for polygonal
area lights in two ways. First, we adaptively approximate the closed boundary curve of the
light, by extending the Ramer–Douglas–Peucker algorithm to consider the importance of a
given subdivision step to the final shading result. Second, we efficiently clip the light to the
upper hemisphere, by algebraically solving a polynomial equation per curve segment. Owing
to these contributions, our method is efficient for various light shapes defined by cubic Bézier
curves and achieves a significant performance improvement over the previous method applied
to a uniformly discretized boundary curve.

1 ISSN 2331-7418

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

1 Introduction

The area light is a standard representation of light sources in the real world and is
typically used to represent artificial lighting equipment such as fluorescent lights.
Therefore, efficient rendering of scenes with area lights is an important research topic
in physically based rendering. Although importance sampling can be a solution for
area light evaluation in offline rendering scenarios, most real-time applications cannot
afford such computationally expensive sampling.

To overcome this limitation, Heitz et al. [2016] introduced a solution for real-time
polygonal area lights and glossy surfaces, where the surface response is modeled by a
microfacet bidirectional reflectance distribution function (BRDF) [Torrance and Spar-
row 1967]. Their method approximates the microfacet reflection lobe with a clamped
cosine distribution that has been linearly transformed. Because the integral of this dis-
tribution over the polygonal shape of the light is invariant to linear transformation, the
shading calculation boils down to a simpler problem involving a Lambertian surface.
Then, a closed-form solution [Baum et al. 1989] can be applied to the combination of
a Lambertian surface and a polygonal area light. This method for polygonal shapes
was later extended to line- and disk-shaped area lights [Heitz and Hill 2017].

Unfortunately, despite the efforts of these previous studies, real-time illumination
from free-form planar area lights has not yet been achieved. The central difficulty
is the fact that the closed-form solution for polygonal area lights cannot be used for
free-form shapes even when the boundary shape is defined mathematically using poly-
nomial curves.

2 Real-Time Shading with Free-Form Planar Area Lights

To address this problem, we extend the previous method for polygonal area lights by
discretizing the curved boundary of the light. In the following discussion, we assume
that this boundary is defined by a set of cubic Bézier curves.

2.1 Shading with Linearly Transformed Cosines

The integration involved with area light shading originates from a study by Lam-
bert in the 1700s [Lambert 1760], where he proved that the integration of a cosine
function over a region on the unit hemisphere can be transformed into another inte-
gration over the area given by projecting the region orthogonally to the unit disk (see
Figure 2(a)). Baum et al. [Baum et al. 1989] applied this solution to the computer
graphics problem of calculating differential area–polygon form factors for radiosity,
which is equivalent to the shading of a Lambertian surface from a polygonal area
light with uniform emission. In this case, the unit disk for calculating a form factor
is defined on a local shading plane, and the area on the unit disk (see Figure 2(b)) is
calculated using Lambert’s formula.

2

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

(b) Polygon on hemisphere(a) Free shape on hemisphere

Figure 2. The integration of the clamped cosine function over the region on the unit hemi-
sphere (red region) is equivalent to calculating the area of its orthogonal projection to the unit
disk (orange region). When a polygon is projected onto the unit hemisphere, the area on the
unit disk has a closed-form solution [Lambert 1760].

Let L be the radiance of the area light and p0, . . . ,pN−1 be the vertex positions
of a polygon in the local coordinate system centered on the shading point. Then, we
can obtain the radiance at the shading point from the following formula:

I ≈ L

π
· 1

2

N−1∑
i=0

acos(〈pi,pj〉)
〈

pi × pj

‖pi × pj‖
, ez

〉
, (1)

where j = (i + 1) mod N , 〈p,q〉 is the dot product of vectors p and q, and ez =

(0, 0, 1)T is the unit vector of the z-axis. Refer to the technical report by Heitz [2017]
for the geometric interpretation of this formula.

To apply Equation (1) to non-Lambertian surfaces, Heitz et al. [2016] proposed
approximating the lobe shape of a microfacet BRDF by a cosine distribution. In par-
ticular, they demonstrated that the lobe shape given by the GGX normal distribution
function [Walter et al. 2007] can be accurately approximated by a clamped cosine dis-
tribution that has been linearly transformed. They referred to the distribution obtained
from the linear transformation as a linearly transformed cosine (LTC). By applying
the inverse transformation to the vertices of the polygon area light, shading of glossy
surfaces can then be calculated using Equation (1) owing to this approximation.

2.2 Linear Transformation for Bézier Curves

A Bézier curve B(t) with curve parameter t ∈ [0, 1] is defined using Bernstein’s
polynomial JK,i as follows:

B(t) =

K∑
i=0

JK,i(t)pi, where JK,i(t) =

(
K

i

)
tK(1− t)K−i

and pi is the ith control point of the Kth-order Bézier curve. To apply the previous
method for polygonal shapes, we need to calculate the Bézier curve B′(t) after linear
transformation. Owing to the affine invariance of Bézier curves, we can easily obtain

3

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

the linearly transformed Bézier curve by transforming only its control points:

B′(t) =
K∑
i=0

JK,i(t)p
′
i, where p′i = Mpi

and M is a linear transformation to approximate a BRDF lobe with a clamped cosine
distribution. Now, analogous to the previous method, it is sufficient to consider only
the case where the shading can be calculated for Lambertian surfaces. Therefore, we
hereinafter denote B′ as B to simplify the exposition.

2.3 Radiance-Aware Boundary Curve Discretization

We can approximate a boundary shape defined by Bézier curves as a polygon by sam-
pling the curve parameter t = t0, t1, . . . , tN−1 and calculating vertex positions B(t0),

B(t1), . . . ,B(tN−1). Therefore, we can calculate the shading with a free-form planar
area light by using the previous method [Heitz et al. 2016]. However, discretizing the
Bézier curve with a constant number of vertex samples is inefficient because the sig-
nificance of the illumination obtained by an area light varies with the shading points.
In other words, when a shading point is only dimly lit by the light, we can roughly
approximate the boundary shape using a small number of vertex samples. On the
other hand, we need more vertex samples for a shading point strongly illuminated by
the light. To consider the significance of the illumination during the discretization of
the boundary curve, we propose an adaptive curve discretization based on the clas-
sic Ramer–Douglas–Peucker (RDP) algorithm [Ramer 1972; Douglas and Peucker
1973]. An overview of the algorithm is illustrated in Figure 3.

The original RDP algorithm starts with a line segment that connects two end-
points of an open curve. Then, it samples a vertex on the target curve farthest from
the current approximated curve. The process is repeated until the farthest vertex is
sufficiently close to the approximation curve. In an analogous manner, our method
starts with a line segment but samples a new vertex such that the resulting polygonal
shape makes the greatest contribution to the shading point of interest. However, deter-
mining the vertex with the largest contribution requires calculating the shading of the
resulting shape many times, which is computationally expensive for real-time render-
ing. Instead, we sample a new vertex at the middle of the interval of curve parameter t.
Suppose that the interval of the curve parameter I is [tmin, tmax]. Then, we always
subdivide the interval into half by sampling a new parameter tmid = (tmin + tmax)/2.
As this subdivision may fail to approximate a curve with inflection points, we initially
split the default domain [0, 1] of the curve parameter t into Ndiv subsections. For a
cubic Bézier curve, Ndiv = 4 is sufficient in practice; we illustrate an example for
Ndiv = 2 in Figure 3 for simplicity.

We now denote an interval as I(l)i , where the superscript l represents the level of
detail and the subscript i denotes an index of the interval at each detail level. Starting

4

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

(a) Initial state (b)

(d) (e) (f) Finish

(c)

#curve = 2
= 2

continue

stop & nextstop & next

Figure 3. Boundary integration by radiance-aware discretization. A given curve is initially
separated into Ndiv intervals. For each interval I(l)

i , the midpoint tmid is inserted to eval-
uate the radiance from the triangular area ∆

(l)
i . The interval is further subdivided when

|L
∆

(l)
i
| > ε. The subdivision process is performed recursively until all of the intervals have

been processed as in (b)–(e). Finally, the total radiance from the area light, as well as a
polygonal approximation, is calculated.

from the initial intervals I(0)0 , . . . , I(l)Ndiv−1, we determine whether each interval is fur-

ther subdivided or not. For a triangle ∆
(l)
i defined by three vertices B(tmin), B(tmid),

and B(tmax) of the interval, we calculate the contribution L(∆
(l)
i) to the shading

point using Equation (1). We continue the subdivision only when the absolute value
of the contribution is larger than a predefined threshold ε. As Figure 3(e) shows, the
value of L(∆

(l)
i) can be negative depending on the order of the vertices. Therefore,

we can calculate the contribution from only the interior region of the light without
any consideration of the triangles outside the boundary. In addition, we do not need
to reevaluate Equation (1) for the resulting polygon because each term summed up in
Equation (1) for each edge has already been calculated during the curve discretization.

In this operation, we need to specify a threshold ε to balance computation speed
and accuracy. We use different thresholds for specular and diffuse reflections, which
we denote εs and εd, respectively. Here, we examine how the threshold affects the
computation time and rendering quality by changing εs. Figure 4 shows the change
in the rendered images for different εs, and the corresponding computation time is
shown in the bottom right corner of each image. The results in the first three columns
obtained using the fixed values of εs reveal two facts. First, when the threshold is in-
sufficiently small, the reflection of the area light becomes discontinuous on an almost
purely reflective surface with α = 0.01. Hence, we need to use a small threshold
when α is small. Conversely, when α is larger, e.g., α = 0.25, the quality of the
rendered images does not increase significantly when using a smaller εs, but the com-
putation time rapidly increases. Therefore, we can use a larger threshold for a rough

5

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

#c
ur

ve
s =

 4
#c

ur
ve

s =
 4

4.19 ms 4.72 ms 8.28 ms 4.24 ms

4.10 ms 4.15 ms 4.22 ms 4.16 ms

Figure 4. Comparison of lighting on a glossy floor for different radiance thresholds εs. The
value of εs decreases from left to right in the first three columns, and the adaptive threshold is
used in the rightmost column.

surface to prioritize computation speed over rendering quality. In summary, we need
to use a smaller εs when α is small, whereas we can use a larger εs when α is large.
Following this observation, we empirically set εs = 0.1 × α2 to balance quality and
computation time. For εd, we use a sufficiently large value, e.g., εd = 1000, because
the reflection from a diffuse surface is blurrier than that of a rough specular surface.
To more clearly see the effect of the adaptive threshold for εs, we visualize the num-
ber of polygon vertices (equal to the number of edges) at each pixel given by the RDP
algorithm in Figure 5. Compared to a constant εs = 10−5, which is sufficiently small

#c
ur

ve
s =

 4
#c

ur
ve

s =
 4

#edges: 0 128

Figure 5. Visualization of the number of vertices for discrete boundary integration at each
pixel. The scene is the same as the one in Figure 4. The adaptive threshold εs = 0.1 × α2

(top row) keeps the number of vertices small even for a rough reflective surface, whereas the
constant threshold ε = 10−5 (bottom row) overly subdivides the boundary of the light.

6

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

to achieve high rendering quality for arbitrary α, the adaptive threshold conserves the
number of vertices as shown in the top row, whereas the rendered results in Figure 4
(α = 0.1, 0.25) are approximately identical.

Listing 1 provides GLSL code for the curve approximation, where the function
bezierCurve uses De Casteljau’s algorithm for the cubic Bézier curve, which can
be implemented using three mix calls. In addition, integrateEdge evaluates the
contribution from a single edge, for which we use an efficient rational approximation
to avoid calculating acos in Equation (1), as introduced by Hill and Heitz [2016].

2.4 Algebraic Clipping for Cubic Bézier Curves

As reported by Heitz et al. [2016], the illumination integral in Equation (1) can only be
used for a polygonal area light above the local shading plane. The linear transforma-
tion to approximate a BRDF lobe as a cosine distribution may potentially move part
of a light below the plane. This can also happen to a light with a free-form boundary
shape. For the LTC-based shading calculation, the shape of the light is transformed
from the local coordinate system centered on a given shading point to another space
called the clamped cosine space (see Figure 6). Therefore, the intersection points on
the boundary Bézier curve are also calculated in the clamped cosine space.

The intersection of the boundary Bézier curve is always tested with the local shad-
ing plane in the clamped cosine space, even if the shape of the reflective surface itself
is not flat. Without loss of generality, we can assume that the plane is defined by
z = 0. Because the z-coordinate of the Bézier curve can be represented by a polyno-
mial, we can detect the intersection between a Bézier curve and the plane by solving
a simple polynomial equation with regard to the curve parameter t. This polynomial
equation is a cubic equation a t3 + b t2 + c t + d = 0, the coefficients of which are
obtained from the z-coordinates of the four control points of the cubic Bézier curve:

a = −p0,z + 3(p1,z − p2,z) + p3,z,

b = 3(p0,z − 2p1,z + p2,z),

c = 3(−p0,z + p1,z),

d = p0,z,

where pi,z denotes the z-coordinate of the ith control point. Although solutions for
a cubic equation can be obtained via the traditional Cardano formula, we are only
interested in real-number solutions within the domain of the curve parameter, i.e.,
t ∈ [0, 1]. Hence, we can use a more efficient and robust method [Blinn 2007] that
initially checks the number of real-number solutions and then calculates each one. Al-
ternatively, we could have used classic Bézier clipping [Sederberg and Nishita 1990]
for the clipping operation. However, we found it difficult to achieve sufficient accu-
racy and speed with Bézier clipping implemented as a shader program.

7

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

vec3 integrateCurve(Bez bez, float tStart, float tEnd,

int Ndiv, float eps) {

// Initialization

const float tRange = tEnd - tStart;

const float interval = tRange / Ndiv;

for (int i = Ndiv; i > 0; i--) {

const int j = i - 1;

const float tMin = interval * j + tStart;

const float tMax = interval * i + tStart;

stk[stkIndex++] = vec2(tMin, tMax);

}

//*****Integration with triangle dividing*****//

vec3 res = vec3(0.0);

while (stkIndex != 0) {

const vec2 tmp = stk[--stkIndex];

const float tMin = tmp.x;

const float tMax = tmp.y;

const float tMid = 0.5 * (tMin + tMax);

// Sample Bézier curve

const vec3 Btmin = bezierCurve(bez, tMin);

const vec3 Btmid = bezierCurve(bez, tMid);

const vec3 Btmax = bezierCurve(bez, tMax);

// Compute radiance of triangular light

const vec3 I01 = integrateEdge(Btmin, Btmid);

const vec3 I12 = integrateEdge(Btmid, Btmax);

const vec3 I20 = integrateEdge(Btmax, Btmin);

const vec3 I = I01 + I12 + I20;

// Comparison between radiance and threshold

if (abs(I.z) >= thres) { // Split into two sections.

stk[stkIndex++] = vec2(tMid, tMax);

stk[stkIndex++] = vec2(tMin, tMid);

}

else { // Sum up edges.

res += I01 + I12;

}

}

return res;

}

Listing 1. GLSL code for integration with radiance-aware boundary discretization.

8

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

Linear
Transform

(a) Local coordinates (b) Clamped-cosine space
z = 0z = 0

Figure 6. The clipping operation to eliminate regions of the light that are below the local
shading plane (z = 0). Even when the area light is located above the plane in the local
coordinate system, as in (a), it may intersect after the LTC transformation, as in (b).

Listing 2 provides GLSL code for the algebraic clipping. Here, the roots of the cu-
bic equation are obtained via solveEquation, which returns the number of roots
in count and their values in ts. Because the equation may also be quadratic or
linear depending on the positions of the control points, it can be solved in a simpler
way. For more details, we refer the reader to the source code for solveEquation,
which we provide as supplementary material.

3 Results and Discussion

We implemented our system using C++ with OpenGL. Both of the proposed algo-
rithms are realized in a GLSL fragment shader. For the following experimental
results, we calculated both the specular and diffuse reflections using the proposed
method. Algebraic clipping is performed twice (once for each reflection), though it
can be omitted for the diffuse reflection when the area light does not intersect with
the local shading plane. Performance analysis was performed using a PC equipped
with an Intel Xeon Gold 5118 2.3 GHz CPU, NVIDIA GeForce GTX 1080 GPU,
and 96 GB of system RAM. All results in this article were rendered at a resolution of
1024 × 1024 pixels, and performance timings are for this resolution even when only
a part of the image is shown in some figures.

3.1 General Results

Figure 1 shows the rendering results for area lights with various shapes. The sup-
plementary material includes a movie of the animated results for these scenes, where
the light moving up and down is captured by a moving camera. In these scenes, the
reflective properties of the glossy floors are described by GGX BRDFs [Walter et al.
2007] with different roughness parameters α. In contrast to the previous method for
polygonal area lights [Heitz et al. 2016], our method can handle a significant range
of light shapes as long as they are represented by cubic Bézier curves. As shown

9

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

void algebraicClipping(Bez bez, inout int count,

inout float ts[NUM_INTERSECT_MAX]) {

// Check cases that do not need clipping.

// NUM CPS IN CURVE = 4, NUM INTERSECT MAX = 3

int numCpsUnder = 0;

for (int i = 0; i < NUM_CPS_IN_CURVE; i++) {

numCpsUnder += (bez.cps[i].z < 0.0) ? 1 : 0;

}

if (numCpsUnder == 0 || numCpsUnder == NUM_CPS_IN_CURVE) {

return;

}

//*****Algebraic clipping*****//

const float P0z = bez.cps[0].z;

const float P1z = bez.cps[1].z;

const float P2z = bez.cps[2].z;

const float P3z = bez.cps[3].z;

// Compute coefficients.

const float a = -P0z + 3.0 * P1z - 3.0 * P2z + P3z;

const float b = 3.0 * (P0z - 2.0 * P1z + P2z);

const float c = 3.0 * (-P0z + P1z);

const float d = P0z;

// Solve cubic, quadratic, or linear equation,

// and store the parameter t in ts.

solveEquation(a, b, c, d, count, ts);

}

Listing 2. GLSL code for the algebraic clipping.

in the figure, our method supports a complicated curvy shape with an internal hole,
as in Figure 1(a), and a letter shape whose boundary curve is defined by a combina-
tion of Bézier curves and line segments, as in Figure 1(b). Furthermore, the previous
method for a textured area light can be naturally extended to our method for free-
form shapes, as shown by the result in Figure 1(c). In our implementation, the texture
is prefiltered with a Gaussian filter in the same manner as the original LTC-based
method [Heitz et al. 2016]. The kernel size is uniform inside the boundary of the
light, whereas for exterior regions the size depends on the distance from the bound-
ary. An alternative approach using the form-factor vector was also introduced by Hill
and Heitz [2016], which avoids the need to prefilter exterior regions by leveraging the
fact that the form-factor vector always intersects the polygon provided it is convex.
However, the form-factor vector may not intersect the free-form area when its shape
is non-convex or has internal holes. Hence, we used the original approach of filtering
exterior regions, which does not slow down the main rendering process because all of
the filtering operations can be carried out as a preprocess.

10

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

O
ur

s
R

ef
er

en
ce

O
ur

s
R

ef
er

en
ce

O
ur

s
R

ef
er

en
ce

#curves = 7

(a)

#curves = 12

(b)

#curves = 4

(c)

4.38 ms

12.55 ms

7.15 ms

4.48 ms

12.52 ms

7.38 ms

4.46 ms

12.60 ms

7.40 ms

4.39 ms

12.70 ms

7.31 ms

texture

texture

texture

4.47 ms

12.75 ms

7.38 ms

Figure 7. Comparison of our rendering results and path-traced reference images for the
scenes shown in Figure 1. The results are compared using different roughness parameters
α to demonstrate the robustness of our method with arbitrary roughness.

3.2 Comparison against Reference Images

To demonstrate the accuracy of our method, we compared the results against path-
traced reference images rendered using Cycles, a physically based renderer bundled
with Blender [2021]. Each image was rendered using 512 path samples per pixel (spp)
by enabling GPU hardware acceleration. Figure 7 shows a side-by-side comparison
for the scenes in Figure 1. In this comparison, we varied the value of α to demonstrate
that our method works for arbitrary α. The computation time for each result is also

11

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

#c
ur

ve
s =

 3
#c

ur
ve

s =
 3

N = 6 N = 18 N = 30 Ours

same time same quality

0.93 ms

1.13 ms

1.92 ms

1.92 ms

2.33 ms

2.36 ms

0.97 ms

1.02 ms

Figure 8. Comparison of the rendered images and computation times of our method using
adaptive vertex sampling with the previous method [Heitz et al. 2016] using uniform vertex
sampling of the polygon vertices. The presented times are for computing only specular reflec-
tion. The green and yellow rectangles highlight pairs of columns with the same computation
time and rendering quality, respectively.

shown in the bottom right corner. This comparison demonstrates that our method has
succeeded in rendering visually identical results to those obtained from path tracing
(with the exception of the textured light, which uses a prefiltered approximation, as
stated earlier). Meanwhile, the computation time of our method is significantly lower
than the reference path tracer, which took approximately 20 seconds to obtain these
results despite hardware acceleration.

3.3 Comparison to Uniform Curve Discretization

We compared our method to the previous method [Heitz et al. 2016] in two different
ways. First, we applied the previous method to a polygonal light shape that is pro-
duced by simply sampling the vertices uniformly on the boundary curve. In this case,
the intersection of the polygon and the local shading plane can be detected by check-
ing the intersection of each edge and the plane one by one. We varied the number
of polygon vertices for the previous method as N = 6, 18, 30 and compared the ren-
dered images and computation times. In this experiment, the light shape was defined
by two curves and one line segment, and we approximated each curve individually
with N vertices, while the line segment was used without subdivision. As shown in
Figure 8, the boundary shape of the light image on the floor is angular when the num-
ber of vertices is insufficient for the previous method. As the number of vertices N
increases, the boundary shape approaches the original one, and the computation time
increases. When N = 6 vertices are sampled, the computation times of the previous

12

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

Textured quad. Ours Reference

#c
ur

ve
s =

 7
#c

ur
ve

s =
 7

Figure 9. Comparison of the results obtained for a quadrilateral area light masked by a
light shape image between our method and the reference. Though this textured light can be
rendered using the previous method [Heitz et al. 2016] for polygonal area lights, the blurry
appearance over the glossy surface clearly diverges from the reference.

method and ours are almost equal, whereas the approximated boundary shape of the
previous method is still noticeably angular. In contrast, using N = 30 vertex samples
results in more computation time than required by our method, whereas the quality
of the results is approximately the same. Thus, the adaptive curve discretization of
our method is computationally more efficient than the previous method, even though
it requires an additional shading calculation for small triangles during the boundary
subdivision and uses more complicated algebraic intersection testing.

3.4 Comparison to Quadrilateral Light Textured by a Light Shape Image

Second, we applied the previous method [Heitz et al. 2016] to a quadrilateral light
textured by an image mask representing the light shape, with the results shown in
Figure 9. As reported by the previous study, a texture with boundary black regions
causes an artifact because the Gaussian filter cannot adequately approximate the real
blur on glossy surfaces. This is confirmed by our experiment, where the results for a
textured quadrilateral light are different than those of the reference images obtained
by physically based rendering, particularly for diffuse reflection and highly glossy
specular reflection with α = 0.25. In contrast, our method does not need such an im-
age mask to define the light shape, and the results are almost identical to the reference
images.

13

http://jcgt.org

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

4 Conclusion

In this article, we proposed a real-time shading calculation for area lights with a
boundary shape defined by cubic Bézier curves. The proposed method can be easily
implemented on top of the previous method for polygonal area lights [Heitz et al.
2016], and its performance is higher than the previous method with uniform dis-
cretization. Moreover, our technique for cubic Bézier curves can be naturally ap-
plied to other types of polynomial curves such as B-spline curves and rational Bézier
curves, as long as their dimension is less than five.1 We hope that our simple yet
powerful approach for free-form planar area lights enhances the quality of experience
in real-time graphics applications.

Acknowledgments

This project was jointly supported by JSPS KAKENHI (JP18K18075, JP20H04203,
JP17H06101, and JP19H01129), JST ACCEL (JPMJAC1602), JST Mirai Project (JP-
MJMI19B2), and a Grant-in-Aid from the Waseda Institute of Advanced Science and
Engineering.

Index of Supplemental Materials

The supplementary material contains a movie showing animated rendering results and
reference comparisons. Source code is available under the MIT license from the au-
thors’ GitHub: https://github.com/Paul180297/BezierLightLTC.git.

References

BAUM, D. R., RUSHMEIER, H. E., AND WINGET, J. M. 1989. Improving radiosity solu-
tions through the use of analytically determined form-factors. ACM SIGGRAPH Computer
Graphics 23, 3, 325–334. URL: https://doi.org/10.1145/74334.74367. 2

BLENDER FOUNDATION, 2021. Blender: The Free and Open 3D Creation Suite (2.93 LTS).
URL: https://www.blender.org/. 11

BLINN, J. F. 2007. How to solve a cubic equation, part 5: Back to numerics. IEEE Computer
Graphics and Applications 27, 3, 78–89. URL: https://doi.org/10.1109/MCG.
2007.60. 7

DOUGLAS, D. H., AND PEUCKER, T. K. 1973. Algorithms for the reduction of the number
of points required to represent a digitized line or its caricature. Cartographica: The Inter-
national Journal for Geographic Information and Geovisualization 10, 2, 112–122. URL:
https://doi.org/10.3138/FM57-6770-U75U-7727. 4

HEITZ, E., AND HILL, S. 2017. Real-time line- and disk-light shading. In ACM SIGGRAPH
2017 Courses, Physically Based Shading in Theory and Practice, 7:1–7:8. URL: https:
//doi.org/10.1145/3084873.3084893. 2
1Polynomial equations of order five or higher cannot always be solved algebraically.

14

http://jcgt.org
https://github.com/Paul180297/BezierLightLTC.git
https://doi.org/10.1145/74334.74367
https://www.blender.org/
https://doi.org/10.1109/MCG.2007.60
https://doi.org/10.1109/MCG.2007.60
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1145/3084873.3084893
https://doi.org/10.1145/3084873.3084893

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

HEITZ, E., DUPUY, J., HILL, S., AND NEUBELT, D. 2016. Real-time polygonal-light
shading with linearly transformed cosines. ACM Transactions on Graphics 35, 4, 41:1–
41:8. URL: https://doi.org/10.1145/2897824.2925895. 2, 3, 4, 7, 9, 10,
12, 13, 14

HEITZ, E., 2017. Geometric derivation of the irradiance of polygonal lights. Unity
Technology Technical Report. URL: https://hal.archives-ouvertes.fr/
hal-01458129/. 3

HILL, S., AND HEITZ, E. 2016. Real-time area lighting: A journey from research to pro-
duction. In ACM SIGGRAPH 2016 Courses, Advances in Real-Time Rendering in Games,
Part I. URL: https://doi.org/10.1145/2897826.2940291. 7, 10

LAMBERT, J. H. 1760. Photometria, sive de mensura et gradibus luminus, colorum et umbrae
(in German). Sumptibus vidvae E. Klett, typis CP Detleffsen. 2, 3

RAMER, U. 1972. An iterative procedure for the polygonal approximation of plane curves.
Computer Graphics and Image Processing 1, 3, 244–256. URL: https://doi.org/
10.1016/S0146-664X(72)80017-0. 4

SEDERBERG, T. W., AND NISHITA, T. 1990. Curve intersection using Bézier clip-
ping. Computer-Aided Design 22, 9, 538–549. URL: https://doi.org/10.1016/
0010-4485(90)90039-F. 7

TORRANCE, K. E., AND SPARROW, E. M. 1967. Theory for off-specular reflection from
roughened surfaces. Journal of Optical Society of America 57, 9, 1105–1114. URL:
https://doi.org/10.1364/JOSA.57.001105. 2

WALTER, B., MARSCHNER, S. R., LI, H., AND TORRANCE, K. E. 2007. Microfacet
Models for Refraction through Rough Surfaces. In Rendering Techniques, 195–296. URL:
https://doi.org/10.2312/EGWR/EGSR07/195-206. 3, 9

Author Contact Information

Takahiro Kuge
Waseda University
3-4-1 Ohkubo, Shinjuku-ku
Tokyo, 169-8555, JAPAN
takahirolabo@gmail.com

Tatsuya Yatagawa
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku
Tokyo, 113-8656, JAPAN
tatsy@acm.org
https://tatsy.github.io/

Shigeo Morishima
Waseda University
3-4-1 Ohkubo, Shinjuku-ku
Tokyo, 169-8555, JAPAN
shigeo@waseda.jp

15

http://jcgt.org
https://doi.org/10.1145/2897824.2925895
https://hal.archives-ouvertes.fr/hal-01458129/
https://hal.archives-ouvertes.fr/hal-01458129/
https://doi.org/10.1145/2897826.2940291
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/S0146-664X(72)80017-0
https://doi.org/10.1016/0010-4485(90)90039-F
https://doi.org/10.1016/0010-4485(90)90039-F
https://doi.org/10.1364/JOSA.57.001105
https://doi.org/10.2312/EGWR/EGSR07/195-206
mailto:takahirolabo@gmail.com
mailto:tatsy.mail@gmail.com
https://tatsy.github.io/
mailto:shigeo@waseda.jp

Journal of Computer Graphics Techniques
Real-Time Shading with Free-Form Planar Area Lights Using LTCs

Vol. 11, No. 1, 2022
http://jcgt.org

T. Kuge, T. Yatagawa, and S. Morishima, Real-Time Shading with Free-Form Planar Area
Lights Using Linearly Transformed Cosines, Journal of Computer Graphics Techniques (JCGT),
vol. 11, no. 1, 1–16, 2022
http://jcgt.org/published/0011/01/01/

Received: 2021-06-23
Recommended: 2021-07-30 Corresponding Editor: Stephen Hill
Published: 2022-02-18 Editor-in-Chief: Marc Olano

c© 2022 T. Kuge, T. Yatagawa, and S. Morishima (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND
3.0 license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors
further grant permission for reuse of images and text from the first page of the Work, provided
that the reuse is for the purpose of promoting and/or summarizing the Work in scholarly
venues and that any reuse is accompanied by a scientific citation to the Work.

16

http://jcgt.org
http://jcgt.org/published/0011/01/01/
http://creativecommons.org/licenses/by-nd/3.0/

