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Figure 1. From left to right, we show 16, 64, 256, and 1024 points generated in the unit
square using the two-dimensional Kronecker sequence defined by these irrational values:
√
506598872547596

29147227 ,
√
107882942223468

28993644 . The subject of this paper is the method by which we
found this and other useful Kronecker sequences in dimensions greater than one.

Abstract

We review the use of Kronecker sequences for sampling applications. To apply them to multi-
ple dimensions, we develop and execute a method to find irrational numbers that will produce
good-quality results. Finally, we provide empirical evidence that the irrationals we found out-
perform those in current use and that they perform respectably against other sample generation
techniques.

1. Introduction

Sampling is a fundamental operation in computer graphics. The rapid generation
of high-quality sample points remains a topic of active interest. Among other uses,
samples drive the integration methods that have become standard in the synthesis of
imagery. There are a number of properties that we believe make a sample generator
useful.
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• We want to generate samples rapidly.

• We want the code for generating samples to be simple. Bugs that find their
way into sample generation may be difficult to detect because there may be no
immediate error in the resulting program execution. However, by having simple
implementations, we reduce the probability of such bugs occurring.

• We want the sample generator to be scalable to higher dimensions with a mini-
mal increase in the implementation complexity.

• We prefer sample generators that are progressive. In other words, it is useful
that the generator does not need to know how many samples will be generated
before sampling begins.

• Of course, we want the samples to be of high quality.

Stratification is very popular in computer graphics for improving the quality of
point sets generated randomly for sampling. The approach involves subdividing the
sample space uniformly and distributing samples evenly across these areas. Fre-
quently, one sample is randomly placed within each subdivision. Jittered sampling
has long been a popular technique, presumably because it offers a good compro-
mise between ease of implementation and quality [Shirley 1991]. More advanced
stratification methods have been developed for producing sets of high-quality sam-
ples with a corresponding increase in the complexity of the implementation [Kensler
2013; Christensen et al. 2018].

A number of practical methods have emerged for calculating point sets according
to the Poisson-disc distribution. Typically, these require more memory and more
complex implementations than other methods due to the use of spatial data structures
[Dunbar and Humphreys 2006; Bridson 2007].

Tile-based techniques involve dividing the sample space into perfectly packed
tiles and associating sample placements with these tiles. Primitives that define tiles
are saved and later fit together to produce larger collections of samples. Effort is
invested to minimize artifacts where the tiles meet [Kopf et al. 2006; Ostromoukhov
2007; Ahmed et al. 2017].

Sobol sequences and Halton sequences are specific instances of digital nets. Sam-
ple generation involves dividing the interval from zero to one in increasingly finer
steps. Such techniques have enjoyed success in sampling applications, but they re-
quire careful selection of parameters for generating high-dimensional sequences.

Lattice generators space samples with regularity in the unit torus: for example,
using an additive recurrence. Recent work has shown that rank-1 lattices can be ex-
tended to produce samples in high dimensions with a reasonable investment of effort
[Liu et al. 2021].
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Techniques that generate finite point sets tend to result in better sampling than
techniques based on infinite sequences [Dick et al. 2013]. This is because the points
in the set can be optimized relative to one another to guarantee coverage of the space.
However, progressive sample generators are becoming increasingly important in mod-
ern computer graphics work flows where renders may use adaptive sampling or pro-
gressive refinement to improve interactivity for the user.

Sampling is a vast topic, and there are useful surveys that cover this material in
greater detail [Keller et al. 2012; Keller 2013; Dick et al. 2013; Keller et al. 2019].

In this paper, we review a lattice generator that has received little attention in
computer graphics relative to other methods: Kronecker sequences (Figure 1). These
sequences use one irrational value per dimension to produce uniformly distributed
values. They can be implemented with a few lines of code using a compact state
even for high dimensions. This code can run at extreme speeds on contemporary
hardware. Our main contribution is to present lookup tables of irrational numbers that
are suitable for driving Kronecker sequences of various dimensions, and we discuss
the means by which we found them. We demonstrate empirically that the quality of
samples generated with these methods is comparable to other techniques.

2. Kronecker Sequences

Weyl’s Equidistribution Theorem demonstrates that irrational numbers can be used to
produce values that are uniformly distributed. This result is well known in number
theory [Kuipers and Niederreiter 1974]. The sequence can be defined by an additive
recurrence:

S[0] = k0, S[i] = {S[i− 1] + α}, (1)

where S[i] is the value of the 1D sequence at index i and α is the irrational number
that defines the sequence. The expression {x} indicates the fractional part of x, or x
modulo one. The constant k0 is a Cranley–Patterson rotation [Cranley and Patterson
1976] that allows for variation between instances of the sequence. This sequence
generates values that are uniformly distributed in the range [0, 1]. Such sequences are
known as Kronecker sequences.

Kronecker sequences in s dimensions can be calculated by using s linearly in-
dependent irrational values and calculating each dimension independently using the
given formula.

On initial inspection, Kronecker sequences seem to have the properties that we
seek in a sample generator. Samples can be generated rapidly on contemporary hard-
ware, especially when SIMD instructions are available. Multidimensional implemen-
tations are compact and easy to code. Samples may be generated progressively.

For all these advantages, Kronecker sequences have one big caveat. Kronecker
sequences are uniformly distributed in the limit, but short subsequences are not always
well-distributed over the full volume of the unit hypercube.
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Unfortunately, there is no theory that currently exists to help us select irrational
values that will produce optimal Kronecker sequences in dimensions greater than one
[Kuipers and Niederreiter 1974; Niederreiter and Winterhof 2015]. However, there
have been attempts to develop theory that would help us choose useful values, even
if they are not optimal. Authors have suggested that powers of e using rational ex-
ponents would be good choices [Zinterhof 1996]. Transcendental numbers of other
forms have also been suggested [Zhu 2007]. Metallic irrationals, a generalization of
the golden ratio, have also been recommended [Chi 2013]. In practice, these sets are
still vast and it is difficult to find specific values that perform well in real-world appli-
cations. However, one specific generalization of the golden ratio resulted in concrete
values that exceeded the quality of previous efforts [Roberts 2018b]. We will use
those results as a basis of evaluating our findings later in this paper.

Optimal 1D Kronecker sequences have been extended to multidimensional appli-
cations by using permutations or space-filling curves to map the optimal 1D sequence
to higher dimensions [Schretter et al. 2012; Schretter et al. 2016]. These methods
sacrifice some important advantages of Kronecker sequences, such as performance
and simplicity.

In this paper, we propose an empirical method for finding sets of irrational values
that produce good-quality Kronecker sequences. We measure the quality of the results
to demonstrate the utility of the method.

We make no claim that the collections of irrational values we present will produce
optimal Kronecker sequences, but we believe that the values we propose will perform
well when used for real-world computer graphics applications, especially when com-
pact and high-speed sample generation is of special interest.

3. Finding Irrational Numbers for Kronecker Sequences

In this section, we present a method for finding irrational values that will produce
high-quality Kronecker sequences. Our method consists of three elements. First,
we create a metric suitable for estimating the uniformity of a point set. Second, we
demonstrate a method for aggregating the metric for a sequence that is used to produce
point sets of many different sizes. Finally, we describe an iterative refinement method
to improve the aggregate metric value.

To begin, we define a metric to estimate the uniformity of a point set. Many have
observed that maximizing the minimum distance between samples has the effect of
increasing the quality of those samples [Keller 2006; Schlömer et al. 2011; Keller
et al. 2019]; in fact, this is a driving principle in many sample generators based on
the Poisson-disc distribution. We exploit this observation to develop a simple test that
can be used to calculate a quality metric for a set of irrational numbers that drive a
Kronecker sequence.
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Let’s assume that we have a set of points P in the unit hypercube. The set P has
N points. Furthermore, let’s assume we have a region of interest RM within the unit
hypercube, where the expected number of samples from P within the region for a
uniformly distributed point set is M . If Ge(RM ,M) is the ideal Euclidean distance
between two points in RM and Gm(RM ,M, P ) is the closest measured Euclidean
distance between any two points in RM , then the metric is given by

J(RM ,M, P ) =

(
Ge(RM ,M)−Gm(RM ,M, P )

Ge(RM ,M)

)2

. (2)

When estimating the ideal expected distance between points, Ge(RM ,M), we
draw upon existing work for the hypersphere packing problem, imagining that one of
our points lies in the center of each hypersphere. The challenge is to pack uniformly
sized hyperspheres optimally into Euclidean space without overlap using a regular
lattice structure, minimizing the volume of the space outside any hypersphere. In
dimensions 2–8, the optimal solution is known [Weisstein 2021]. In other dimensions,
we approximate a solution by centering hyperspheres at the corners of a hypercube
lattice. The fraction of the volume of the space that is enclosed by hyperspheres is
called the packing density, given by δs for dimension s. If M is the number of points
expected in the region of interest RM , VRM

is the volume of the region of interest,
and the function Qs(v) gives the radius of a hypersphere of dimension s given its
volume v, then the ideal expected distance is given by

Ge(RM ,M) = 2 ·Qs

(
δs · VRM

M

)
. (3)

We use a region of interest in our calculation of J(RM ,M, P ). Without a region
of interest, the time complexity of Equation (2) is O(NlgN) owing to the complexity
of the closest distance algorithm. In cases where the region of interest is used, then
the complexity becomes O(MlgM) + O(N). If we use a small region of interest,
where M is much less than N , then the complexity becomes linear with N . We will
exploit this later as an important optimization.

Sets of irrationals that drive Kronecker sequences that produce lower metric val-
ues are more desirable. As presented, Equation (2) only determines the suitability of
the irrational set for a specific number of samples. For general applications, we want
sets of irrationals that produce good metric values when producing any number of
samples.

We use the metric from Equation (2) to evaluate a set of irrationals over a number
of different sample counts in Algorithm 1.

We establish the maximum number of samples to search on line 1 and the min-
imum on line 2. For our experiments, we used 2s as the lower bound, which is a
typical lower bound for sampling s dimensions.
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Algorithm 1 Metric for a sequence of s dimensions.
1: N1 ← maximum number of samples to test
2: N0 ← minimum number of samples to test, 2s

3: n← Fibonacci sequence (start at smallest value >= N0)
4: KS ← Kronecker sequence (s irrationals)
5: m← 0

6: while n::value() <= N1 do
7: M ← min(n::value(), 22s)
8: RM ← region expected to contain M samples
9: r ← J(RM ,M,KS ::make samples(n::value())

10: m← m+ r

11: n::advance to next value()
12: end while
13: return m

On lines 3, 6, and 11, we use a Fibonacci sequence to generate the exact sample
count to test for each iteration. We found that the irregularity between adjacent values
in the sequence, particularly at low values, helped to prevent our search from favoring
Kronecker sequences whose quality of uniformity oscillated strongly at a particular
frequency relative to the number of samples generated.

On lines 7 and 8, we calculate a region of interest where we expect to find a po-
tentially small fraction of the total number of samples generated. This is an important
optimization that makes the entire search feasible on modern hardware. The perfor-
mance bottleneck changes from being the closest distance calculation to being sample
generation itself.

In our implementation, we used a hypercube centered within the unit hypercube
as our region of interest. On line 9, we collect the metric from Equation (2), where
M is the expected number of samples in the test. In our implementation, we seek
to test 22s samples, which gives us some margin above the minimum sample count
required to sample the dimension in question. In Figure 2, we show the regions of
interest for various sample counts in two dimensions. Because we are using a relative
error calculation, when we aggregate the metric values in Algorithm 1 on line 10,
we have a strong expectation that the metric values will fall within the same order of
magnitude. This means that the results of every iteration are weighted approximately
equally throughout the test.

The idea of using a region of interest is inspired by the observation that the rel-
ative positions of points from a Kronecker sequence repeat in different areas within
the unit hypercube. Testing all the samples would result in a high degree of redun-
dant calculations in most situations. Because we are using the Fibonacci sequence
to generate sample counts, we know that there are approximately 68% more samples
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Figure 2. From left to right, we show sets of 16, 64, 256, and 1024 samples and the regions
of interest our algorithm uses to estimate their quality.

added between iterations of the test. This adds samples relatively slowly to the test
set, so we can have some confidence that we are testing at a frequency sufficient to
catch significant changes in the configuration of the relative positions of samples in
the sequence even in a small region of interest.

We aggregate metrics from different iterations on lines 5, 10, and 13. In effect,
this gives us the root mean square relative error (RMSRE) of the closest distances
between samples in the sequence for all the iterations in the execution. In practice, it
is convenient for us to skip the last division and square root operation in the RMSRE
calculation. This is possible because metrics are only compared when they have been
executed on the same sets of samples, and because metric values are only used for
comparison. Our omission of operations does not change the rank order of the metrics.
Use of the root mean square is known to favor consistently good estimates, punishing
tests that show strong outliers in the observations.

As presented, Algorithm 1 will evaluate the quality of a Kronecker sequence
driven by a specific set of irrationals, but we still need to provide the irrational values
themselves for the test. We start with random values. As we iterate, we add very small
random values to the irrationals and we test the new values to discover improvements.
The addition of small random amounts to the irrationals will be referred to as a value
adjustment. The process is presented in Algorithm 2.

The biggest difference between the two algorithms are on lines 11–19 of Algo-
rithm 2. At each iteration of the search, we generate a selection of alternatives to the
original Kronecker sequence, which are random variations of the original irrational
values. Each new alternative Kronecker sequence is tested, and if it performs better
than the current one with the sample counts encountered so far, then the current one
is replaced. In our experiments, we tested value adjustments of the irrationals of a
sequence four times in each dimension. This is demonstrated on lines 11 and 12.

It may not be obvious how one selects initial irrational values at random or how
one applies value adjustments to irrational values. Quadratic irrationals have good
theoretical properties for 1D Kronecker sequences [Niederreiter and Winterhof 2015];
so, like others [Chen et al. 2003], we used them in our search for multidimensional
sequences. On line 4, we create a new Kronecker sequence by selecting random
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Algorithm 2 Search for s-dimensional Kronecker sequences.
1: N1 ← maximum number of samples to test
2: N0 ← minimum number of samples to test, 2s

3: n← Fibonacci sequence (start at smallest value > N0)
4: KS ← Kronecker sequence (s irrationals)
5: m← 0

6: while n::value() <= N1 do
7: M ← min(n::value(), 22s)
8: RM ← area expected to contain M samples
9: r ← J(RM ,M,KS ::make samples(n::value())

10: m← m+ r

11: for i = 0 to 4s do
12: C ← KS::value adjust irrational values(i)
13: mC ← Algorithm 1 (C, n::value())
14: if mC < m then
15: KS ← C

16: m← mC

17: i← 0

18: end if
19: end for
20: n::advance to next value()
21: end while
22: return KS

fractional values and fitting quadratic irrationals to them, of the form:

α =

√
j

k
,
√
j < k, j, k ∈ Z+. (4)

In our implementation, k can be stored in approximately 25 bits. We use an
integer j of approximately 50 bits, which is convenient on modern hardware given
the representation of double-precision floating-point values and the widespread use
of 64-bit processors. Of course, one need not preserve the full precision of these
values in practice. Using shorter bit-words, the maximum length of the sequence that
can be generated will be affected proportionally.

We execute value adjustments similarly. The floating-point value of the irrational
is offset by a random amount proportional to the expected distance between sample
points at the current sample density. Then, we generate a new quadratic irrational to
approximate this value.

Though we could have only calculated floating-point values that approximate irra-
tional values, we believe that there will eventually be utility in fitting these quantities
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Figure 3. Heat-map visualization showing the quality of Kronecker sequences driven by
irrationals in the unit square. Hot colors, especially red, indicate coordinates of desirable
pairs of irrationals, as indicated by our metrics and methods.

to true irrational values. The theoretical benefit remains to be proven. For the aver-
age engineer, there will be no difference in how these values are ultimately used in
practice.

We recognize that our technique is one of local refinement and not necessarily one
of true exhaustive search. In order to explore diverse irrational sets in the hypercube,
we run Algorithm 2 a very large number of times with distinct initial irrational values
for each execution. The appendix reports the irrationals that produce the Kronecker
sequences with the best metrics among all executions. Because each invocation of
Algorithm 2 can be run independently, this provides a very good opportunity for mas-
sively parallel execution with fairly modest memory requirements.

In Figure 3, we present a heat-map visualization of the unit square, showing where
desirable irrational pairs can be found in two dimensions.

Clearly, there is a regular pattern underlying the data in the figure. This makes
us optimistist that a theory may some day be developed to help us choose optimal
irrational sets analytically. We acknowledge that irregularities or inaccuracies in the
image could represent flaws in our methods.

4. Uniformity Metrics

4.1. Comparing Kronecker Sequences

We used the methods described in the previous section to discover sets of irrational
numbers whose specific values are given in the appendix. In this section, we will
compare the Kronecker sequences produced from these irrationals (K21-2, K21-3,
K21-4) to the Kronecker sequences from Roberts in dimensions 2–4 (R2, R3, R4)
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[Roberts 2018b]. In computer graphics, there is often the need to sample 2D and 3D
space, as well as 3D space+time, so these dimensions are of the greatest interest to
computer graphics practitioners.

We use the star discrepancy and arbitrary edge discrepancy [Dobkin and Mitchell
1993] as metrics of quality in two dimensions. In all dimensions, we report the di-
aphony and the closest Euclidean distance between points in each set.

Diaphony is a measure of uniformity of point distribution closely related to dis-
crepancy [Hellekalek and Niederreiter 1998]. The diaphony of N samples in s di-
mensions can be calculated with O(s · N2) time complexity. Because the diaphony
calculation scales better than the discrepancy metrics to both higher dimensions and
larger point sets [Doerr et al. 2014; Burkardt 2012], we use the diaphony in these
situations to compare Kronecker sequences.

The closest Euclidean distance is interesting to observe because the optimizations
described in the previous section are driven by distance. We acknowledge that the
Euclidean distance becomes less useful in high dimensions due to the Curse of Di-
mensionality.

In Figure 4, we graph the results for Kronecker sequences in two dimensions. In
the following table, we analyze those results over different sample-count ranges.

Samples Star Arb. Edge Diaphony Distance

K21-2 better than R2

[2, 256] 56% 63% 39% 36%
[257, 512] 95% 29% 100% 18%
[513, 1024] 90% 66% 100% 92%
[1025, 2048] 52% 52% 68% 18%

Interestingly, the K21-2 sequence did not frequently beat the R2 sequence with
respect to the closest distance metric. For the other metrics, the K21-2 sequence was
modestly better.

Figure 5 graphs the diaphony and closest distances for the Kronecker sequences
in three dimensions; Figure 6 graphs them for 4D sequences. The results are not
definitive.

Samples Diaphony Distance

K21-3 better than R3

[2, 256] 9% 92%
[257, 512] 20% 100%
[513, 1024] 100% 41%
[1025, 2048] 97% 36%

K21-4 better than R4

[2, 256] 8% 73%
[257, 512] 38 % 100%
[513, 1024] 100% 75%
[1025, 2048] 100% 100%
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Figure 4. Various quality metrics for the K21-2 and R2 Kronecker sequences. The axes of
the charts are logarithmic, base 10.
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Figure 5. Quality metrics of Kronecker sequences in three dimensions.
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Figure 6. Quality metrics of Kronecker sequences in four dimensions.

4.2. Comparing against Other Generators

In this section, we compare the metrics of uniformity for the K21-2 Kronecker se-
quence against those of other progressive sample generators in two dimensions.

In our comparison, we use Grünschloß’s implementation of the Halton23 se-
quence [Grünschloß 2021] and Burley’s implementation of the Sobol sequence with
Owen scrambling [Burley 2020] to represent good digital nets. These implementa-
tions are also known to be fast, so they will be useful during performance testing as
well. We use the PMJ02 generator [Christensen et al. 2018] as a good progressive
stratified sampler, and we use the ART generator [Ahmed et al. 2017] as a good pro-
gressive tile-based sample generator. To provide a baseline, we also use a generator
that produces uniformly random sample points.

Figure 7 graphs metrics of uniformity for the test set, with the following results.

Samples Star Arb. Edge Diaphony Distance

K21-2 best

[2, 256] 12% 7% 35% 79%
[257, 512] 29% 0% 90% 95%
[513, 1024] 38% 0% 95% 100%
[1025, 2048] 22% 0% 92% 100%

The K21-2 sequence underperformed with respect to the arbitrary edge discrep-
ancy, but these results could be anticipated. Because Kronecker sequences are defined
by an additive recurrence, they will produce subsets of samples that are colinear.
When lines are used to divide the space, during the calculation of the arbitrary edge
discrepancy, the samples that fall onto the line drive up the value of the discrepancy.

With the other uniformity metrics, the performance of the K21-2 sequence was
respectable.

66

http://jcgt.org


Journal of Computer Graphics Techniques
Optimizing Kronecker Sequences for Multidimensional Sampling

Vol. 11, No. 1, 2022
http://jcgt.org

1E–1

1E+0

1E–2

1E–3

1E–1

1E+0

1E–2

1E–3

1E–1

1E+0

1E–2

1E–3

1E–1

1E+0

1E–2

1E–3

1E–4

ART Hal23 PMJ02 Rand SobOwen K21-2

Figure 7. Metrics of uniformity for a variety of progressive sample generators.

5. Empirical Testing

5.1. Function Integration

In this section, we compare the quality of the K21-2 sample generator against various
others when used to integrate a collection of simple 2D functions. For our tests, we
used sample counts in the range [2, 2048].

For each sample count, we used each generator in 25 trials, where the genera-
tor produced points that were used to integrate the function of interest. The ART,
Halton23, R2, and K21-2 generators used a different uniformly random Cranley–
Patterson rotation for each trial. The PMJ02, Sobol–Owen, and uniformly random
generators used different random seeds for each trial. We report the RMS error over
the full set of trials for each sample count in Figure 8. The following table summarizes
an analysis of these results over different sample-count ranges.
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Figure 8. The RMS error using sample generators to integrate various continuous and dis-
continuous functions. The axes are logarithmic, base 10.
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Samples Disc Tri. Step Gaussian Bilinear Smoothstep

K21-2
better
than
R2

[2, 256] 90% 97% 85% 87% 83% 90%
[257, 512] 88% 89% 80% 83% 97% 90%
[513, 1024] 100% 92% 73% 84% 92% 83%
[1025, 2048] 95% 30% 60% 78% 55% 67%

K21-2
best

[2, 256] 13% 95% 23% 0% 1% 1%
[257, 512] 33% 89% 16% 0% 0% 0%
[513, 1024] 20% 92% 2% 0% 0% 0%
[1025, 2048] 40% 30% 0% 0% 0% 0%

The K21-2 sequence frequently outperformed the R2 sequence. When compared
with other generators, it performed respectably for discrete signals; but it underper-
formed the Sobol–Owen and PMJ02 generators when sampling continuous signals.

5.2. Pixel Sampling

To test our generators for pixel sampling applications, we sampled signals into 256×
256 images and measured the resulting RMS error. We began by rendering a reference
image with 512Ki samples per pixel. For each test, 11 trials were run with the same
sample generator and the same sample count. Each generator was used to produce
25 variations. Each variation of the ART, Halton23, R2, and K21-2 generators used a
different random Cranley–Patterson rotation. Variations of the PMJ02, Sobol–Owen,
and uniformly random generators used different random seeds. A variation of the
generator being tested was selected randomly to be used for each pixel of each trial.
The RMS error for the resulting image was recorded, and the median of the results of
the trials is reported in Figure 9. An analysis of these data is summarized in the table
that follows.

Samples Binary
Zone Plate

Smooth
Zone Plate

Checker-
board

Tiled Bells

K21-2
better
than R2

[2, 256] 91% 93% 91% 93%
[257, 512] 99% 100% 100% 100%
[513, 1024] 74% 94% 72% 96%
[1025, 2048] 48% 67% 40% 75%

K21-2
best

[2, 256] 47% 0% 9% 6%
[257, 512] 67% 0% 48% 25%
[513, 1024] 84% 0% 12% 30%
[1025, 2048] 45% 0% 18% 75%

As before, the K21-2 generator frequently showed better results than the R2 gen-
erator. Compared against the others, the K21-2 underperformed the Sobol–Owen and
PMJ02 generators for the smooth zone plate; but it performed well for the binary zone
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Figure 9. The RMS error using sample generators to pixel-sample various continuous and
discontinuous functions.

plate. For the other signals, its performance was respectable. Figure 10 shows some
renders that resulted from this test.

(a) ART (b) Halton23 (c) PMJ02 (d) R2

(e) Rand (f) SobOwen (g) K21-2

Figure 10. Renders of the binary checkerboard using different sample generators. Each
render used 8 samples per pixel.
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Figure 11. The RMS error using various sample generators to calculate shadows.

5.3. Shadow Sampling

We used Beason’s path tracing code base [Beason 2014] to implement a simple frame-
work for testing shadow sampling. We conducted two tests, one for sampling the
shadow from a large spherical area light and another for calculating the ambient oc-
clusion of the same scene. Images were rendered at a resolution of 100 × 100 pixels
using one camera ray per pixel. Upon intersection with geometry, a number of rays
were spawned to conduct the shadow calculation using sample points to determine
the direction of each ray. Each instance of a shadow calculation used a randomly
selected variation of the sample generator being tested. Each sample generator had
25 variations, produced in the same manner described in the last section.

We measured the resulting RMS error against a reference rendered with 64Ki
samples per shadow calculation. The results are graphed in Figure 11. An analysis is
summarized in the table that follows.

Samples Area Light Ambient Occlusion

K21-2 better than R2

[2, 128] 43% 82%
[129, 256] 0% 74%
[257, 512] 51% 100%
[513, 1024] 96% 93%

K21-2 best

[2, 128] 2% 35%
[129, 256] 0% 27%
[257, 512] 0% 39%
[513, 1024] 59% 58%

With these tests, the K21-2 generator outperformed the R2 generator more mod-
estly. When compared with the other generators, it was infrequently the best per-
former, but its results were respectable. In Figure 12, we show images produced
during this test.
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(a) ART (b) Halton23 (c) PMJ02 (d) R2

(e) Rand (f) SobOwen (g) K21-2

Figure 12. Ambient occlusion renders using various sample generators. Each render used
8 samples per shading point for the ambient occlusion calculation.

5.4. Path Tracing

We tested our collection of sample generators by rendering a simple scene with path
tracing. A variation of each generator was selected randomly to cast camera rays into
the scene for each pixel. The variations were generated in the same manner described
in the previous sections. Diffuse reflection rays also shared a randomly selected vari-
ation of a generator if they originated from the same pixel, had the same ray depth,
and were reflecting from the same surface. An explicit light sampling calculation oc-
curred for diffuse surfaces; area light samples shared a randomly selected variation of
a generator if they originated from the same pixel, had the same ray depth, and were
passing from the same surface to the same light.

Rays were cast into the scene at a variety of sample counts for each generator to
produce 256× 128 resolution images. The RMS error for each image was calculated
using a reference rendered with 512Ki rays cast per pixel.

Figure 13 presents graphs of the results. This was perhaps the least dynamic
result of all the testing; the various sample generators produced very similar results.
Nonetheless, an analysis of the modest differences between them found that the K21-
2 generator outperformed the R2 generator 75% of the time. It performed best of all
the generators 59% of the time over the full range of samples. It did particularly well
at lower sample counts; in the range [2, 256], it was best 84% of the time.

5.5. Performance Testing

We tested the performance of our implementation of 2D Kronecker sequences against
various other fast implementations of sample generators. We used the following:

• A uniformly random 2D generator using the fast pseudo-random number gen-
erator presented by Kensler for use in his stratified sample generator [Kensler
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Figure 13. The RMS error using various sample generators to path-trace a simple scene.

2013]. In our tests, it produced floating-point values significantly faster than
the glibc drand48() generator.

• Grünschloß’s implementation of the Halton23 sequence.

• Burley’s implementation of the Sobol sequence with Owen scrambling.

• The Sobol generator of Heitz et al. [2019]. This generator does not satisfy all
the criteria set forth in Section 1; for example, its lookup tables depend upon
resolution and sample count. Nonetheless, it is considered to be particularly
fast, so it was included in the test.

• The stochastic Sobol sequence, with Owen scrambling, of Helmer et al. [2021].
We used the implementation from Listing 2 of their paper. We replaced its use
of the drand48() generator with Kensler’s generator to improve performance
and to reduce the calculation to single-precision floating-point values.

All the implementations tested produce 32-bit floating-point samples. We tested
each generator using a single thread on an Intel Xeon W3670 CPU running at a clock
rate of 3.20 GHz. This is an older-generation processor; however, we expect that the
relative performance between generators will be approximately the same when these
algorithms are executed on other kinds of hardware.

Million Samples per Second

2D Kronecker 515
Uniformly Random 154
Heitz Sobol–Owen 139

Helmer Stochastic Sobol–Owen 100
Grünschloß Halton23 73
Burley Sobol–Owen 10
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Figure 14. Left: The samples of a Kronecker sequence naturally create recurring shapes of
points. Right: As a result, the power spectral density is similar to that of a lattice signal, where
energy is not favorably distributed.

Clearly, the 2D Kronecker sequence is a significantly faster generator than the oth-
ers. Our implementation uses, for each dimension, one integer addition, one integer-
to-floating-point conversion, and one floating-point multiply operation. Details for
acquiring our implementation are presented in the supplementary materials section.

6. Blue Noise Properties

Kronecker sequences produce groups of samples in shapes that recur. Indeed, we
exploited this property in an earlier section to create a critical optimization for the
algorithms that search for useful sets of irrational values.

Unfortunately, this property of Kronecker sequences means that the power spec-
tral density (PSD) does not show very good quality. We visualize this in Figure 14.
The energy is concentrated in impulses instead of being well-distributed.

Two-dimensional sequences with favorable blue noise properties can be created
from one-dimensional low-discrepancy sequences by permuting them in a series of
specific ways [Ahmed et al. 2016]. Kronecker sequences seem well suited as inputs
to this approach, but a full investigation is beyond the scope of this paper. The method
is a unique sample generator unto itself, whereas the subject of this section is to
refine Kronecker sequences as conservatively as possible to improve their blue noise
properties.

A method for improving the blue noise properties of Kronecker sequences has
been presented [Roberts 2018a]. The approach involves jittering samples with a di-
minishing amplitude as the number of samples generated increases. This technique
applies to any dimension.

We revise that method here in two ways. First, we focus on fast jittering using
only square areas, introducing a conservative scaling factor to reduce the probability
that square jitter areas will overlap between nearby samples. Second, we demonstrate
that a second Kronecker sequence can be used as a source for jitter values. Previously,
a multiplicative recurrence was used, which requires special care to calculate due to
the limits of floating-point precision. In the previous section, we saw that Kronecker
sequences can be generated faster than pseudo-random numbers, so using them for
jittering improves performance.
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First, we need to define a volume within which each sample may be jittered.
We begin by dividing the space of the unit hypercube into smaller hypercubes, each
associated with a sample. If we divide the space equally among the samples produced
thus far, then the edge length of the hypercube associated with the nth sample in s
dimensions is given by

Ln =
1
s
√
n
. (5)

A corrective factor of γ = 0.78 has been suggested to account for the expected
closest distance between points of the R2 Kronecker sequence [Roberts 2018a]. We
preserve its use. Furthermore, we introduce a corrective factor of 1√

s
to account for

the length of the diagonal of the s-dimensional hypercube. This prevents jitter areas
from overlapping when the vector between the two closest points is not axis-aligned.
Last, we apply a user-control factor, j, in the range [0, 1] to allow the jittering effect to
be modulated. Applying these factors to the edge length gives us the window within
which we may displace each sample. If S0[n] and S1[n] are the nth vectors produced
by two Kronecker sequences of good quality, then the jittered sample in dimension s
is given by

S[n] =

{
S0[n] +

(
Ln · γ · j√

s

)
· S1[n]

}
. (6)

In our testing, we used K21-2 as S0[n] and K21b-2 as S1[n]. The irrationals for
these Kronecker sequences are given in the appendix. Visualizations of the sample
sets resulting from jittering the K21-2 sequence are given in Figure 15. The effect
of jittering on the PSD is given in Figure 16. Even with the most modest example,
j = 6.25%, the PSD shows significant improvements.

It is worth noting that, though jittered versions of the K21-2 sequence demon-
strate better blue noise properties, the performance of the jittered K21-2 sequence
deteriorates definitively as the amplitude of the jitter increases. Figure 17 demon-
strates this. Therefore, we can only recommend jittering when the PSD must show an
improved distribution of energy for a particular application, and we recommend that
the amplitude of the jitter be kept as small as the application would allow.

Figure 15. From left to right, 128 samples of the K21-2 sequence jittered with j = 6.25%,
12.5%, 25%, and 50%.
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Figure 16. From left to right, the PSD of the K21-2 sequence jittered with j = 6.25%, 12.5%,
25%, and 50%.
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K21-2 K21-2,jitter=0.0625 K21-2,jitter=0.125 K21-2,jitter=0.25 K21-2,jitter=0.5

Figure 17. Comparison of the RMS error of zone plate sampling using the K21-2 sequence
and various jittered versions of it.

7. Conclusions

We presented an original method for finding sets of irrationals to drive Kronecker
sequences, which may be used to generate multidimensional samples with extreme
speed for computer graphics applications. We discussed a method for improving the
blue noise properties of such sequences. The irrational values found by our methods
compare favorably against those currently used to drive Kronecker sequences.

Though Kronecker sequences found by our method did not always outperform
other kinds of sample generators, the results were competitive. We anticipate that
these sequences will be useful in adaptive sampling applications where the speed and
compactness of the sample generator is important.
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Appendix

This section presents the results of our application of the algorithms described in
Section 3. We begin the name of each irrational set with a “K” to indicate that it
is intended to produce a Kronecker sequence. Then, we use “21” for the year of its
discovery. Last, we append the dimension of the sequence.

As described, we tested a large number of irrational sets. This is given by the
column “Num. Sets Tested.” During the execution of the test, we iteratively increased
the number of samples produced by the Kronecker sequence. The maximum number
of samples tested is given by the column “Num. Samples Tested.”

The best results are given by the following:

Name Num. Samples
Tested

Num. Sets
Tested

Irrational Values

K21-2 514 K 4 Mi
√
506598872547596

29147227 ,
√
107882942223468

28993644

K21-3 832 K 2 Mi
√
136155583282554

19015340 ,
√
263438703080803

17181595 ,
√
352662070147437

22118332

K21-4 1.34 M 1 Mi
√
1062447381118571

33084971 ,
√
147063651917932

30639341 ,
√
711707016062345

29661368 ,
√
328399936443598

27256281

Next, we present secondary results, which are useful for the methods that improve
the power spectral density of a Kronecker sequence, described in this paper. We use a
“b” in these names to indicate that they are secondary results. Though these irrationals
did not outperform the ones listed above, they are useful nonetheless:

Name Num. Samples
Tested

Num. Sets
Tested

Irrational Values

K21b-2 514 K 4 Mi
√
415745956465435

32662800 ,
√
16340581432791

25338159

K21b-3 832 K 2 Mi
√
6742281674969
20126138 ,

√
42845384312863

18315113 ,
√
1044922263929
25238999

K21b-4 1.34 M 1 Mi
√
79054014721081

17204034 ,
√
7916082904289
18894472 ,

√
859650028021546

29772799 ,
√
623200003618550

27601088
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Index of Supplemental Materials

Our reference implementation of Kronecker sequences is part of the Uni{form|corn}
tool kit, available at github.com/utk-team/utk.

A publication snapshot of the Kronecker sequence code is also provided in
jcgt.org/published/0011/01/04/sample-code.zip.
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